-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathdatasets.py
332 lines (249 loc) · 10.2 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
from fuel import config
from fuel.schemes import (
ConstantScheme, ShuffledExampleScheme,
SequentialExampleScheme)
from fuel.transformers import (
AgnosticSourcewiseTransformer, Batch, Filter, FilterSources,
Mapping, Padding, Rename, SortMapping, Transformer, Unpack)
from fuel.streams import DataStream
from fuel.datasets import H5PYDataset
from quantize import __batch_quantize
import numpy
def _length(data):
return len(data[0])
def _transpose(data):
return data.swapaxes(0, 1)
def _chunk(data, frame_size=80, axis=1):
return numpy.stack(numpy.split(data, data.shape[axis]/frame_size, axis))
def _check_batch_size(data, batch_size):
return len(data[0]) == batch_size
def _check_ratio(data, idx1, idx2, min_val, max_val):
ratio = len(data[idx1]) / float(len(data[idx2]))
# print (min_val <= ratio and ratio <= max_val)
return (min_val <= ratio and ratio <= max_val)
class SegmentSequence(Transformer):
"""Segments the sequences in a batch.
This transformer is useful to do tbptt. All the sequences to segment
should have the time dimension as their first dimension.
Parameters
----------
data_stream : instance of :class:`DataStream`
The wrapped data stream.
seq_size : int
maximum size of the resulting sequences.
which_sources : tuple of str, optional
sequences to segment
add_flag : bool, optional
add a flag indicating the beginning of a new sequence.
flag_name : str, optional
name of the source for the flag
min_size : int, optional
smallest possible sequence length for the last cut
return_last : bool, optional
return the last cut of the sequence, which might be different size
share_value : int, optional
size of overlap
"""
def __init__(self,
data_stream,
seq_size=100,
which_sources=None,
add_flag=False,
flag_name=None,
min_size=10,
return_last=True,
share_value=0,
**kwargs):
super(SegmentSequence, self).__init__(
data_stream=data_stream,
produces_examples=data_stream.produces_examples,
**kwargs)
if which_sources is None:
which_sources = data_stream.sources
self.which_sources = which_sources
self.seq_size = seq_size
self.step = 0
self.data = None
self.len_data = None
self.add_flag = add_flag
self.min_size = min_size
self.share_value = share_value
if not return_last:
self.min_size += self.seq_size
if flag_name is None:
flag_name = u"start_flag"
self.flag_name = flag_name
@property
def sources(self):
return self.data_stream.sources + ((self.flag_name,)
if self.add_flag else ())
def get_data(self, request=None):
flag = 0
if self.data is None:
self.data = next(self.child_epoch_iterator)
idx = self.sources.index(self.which_sources[0])
self.len_data = self.data[idx].shape[0]
flag = 1 # if flag is here: first part
segmented_data = list(self.data)
for source in self.which_sources:
idx = self.sources.index(source)
# Segment data:
segmented_data[idx] = self.data[idx][
self.step:(self.step + self.seq_size)]
self.step += self.seq_size
# Size of overlap:
self.step -= self.share_value
if self.step + self.min_size >= self.len_data:
self.data = None
self.len_data = None
self.step = 0
# flag = 1 # if flag is here: last part
if self.add_flag:
segmented_data.append(flag)
return tuple(segmented_data)
class SourceMapping(AgnosticSourcewiseTransformer):
"""Apply a function to a subset of sources.
Similar to the Mapping transformer but for a subset of sources.
It will apply the same function to each source.
Parameters
----------
mapping : callable
"""
def __init__(self, data_stream, mapping, **kwargs):
"""Initialization.
Parameters:
data_stream: DataStream
mapping: callable object
"""
self.mapping = mapping
if data_stream.axis_labels:
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy())
super(SourceMapping, self).__init__(
data_stream, data_stream.produces_examples, **kwargs)
def transform_any_source(self, source_data, _):
return numpy.asarray(self.mapping(source_data))
class AddConstantSource(Mapping):
def __init__(self, data_stream, constant, name, **kwargs):
super(AddConstantSource, self).__init__(
data_stream, lambda x: (constant,), (name,), **kwargs)
class VoiceData(H5PYDataset):
def __init__(self, voice, which_sets, filename=None, **kwargs):
assert voice in [
'arctic', 'blizzard', 'dimex', 'librispeech', 'pavoque', 'vctk']
self.voice = voice
if filename is None:
filename = voice
self.filename = filename + '.hdf5'
super(VoiceData, self).__init__(self.data_path, which_sets, **kwargs)
@property
def data_path(self):
return os.path.join(config.data_path[0], self.voice, self.filename)
def get_raw_transformer(q_type, q_level):
def transformer(batch):
# import ipdb; ipdb.set_trace()
batch_shape = batch.shape
batch = batch.transpose(1, 0, 2).reshape((batch_shape[1], -1))
batch = __batch_quantize(batch, q_level, q_type)
batch = batch.reshape((batch_shape[1], -1, 80))
batch = batch.transpose(1,0,2)
return batch
return transformer
def parrot_stream(
voice, use_speaker=False, which_sets=('train',), batch_size=32,
seq_size=50, num_examples=None, sorting_mult=4, noise_level=None,
labels_type='full_labels', check_ratio=False, raw_data=True, q_type='mu-law', q_level=256):
assert labels_type in [
'full_labels', 'phonemes', 'unconditional',
'unaligned_phonemes', 'text']
dataset = VoiceData(voice=voice, which_sets=which_sets)
sorting_size = batch_size * sorting_mult
if not num_examples:
num_examples = dataset.num_examples
if 'train' in which_sets:
scheme = ShuffledExampleScheme(num_examples)
else:
scheme = SequentialExampleScheme(num_examples)
data_stream = DataStream.default_stream(dataset, iteration_scheme=scheme)
if check_ratio and labels_type in ['unaligned_phonemes', 'text']:
idx = data_stream.sources.index(labels_type)
min_val = 8 if labels_type == 'text' else 12.
max_val = 16 if labels_type == 'text' else 25.
data_stream = Filter(
data_stream, lambda x: _check_ratio(x, 0, idx, min_val, max_val))
segment_sources = ('features', 'features_mask')
all_sources = segment_sources
if raw_data:
raw_sources = ('raw_audio', )
all_sources += raw_sources
else:
raw_sources = ()
if labels_type != 'unconditional':
all_sources += ('labels', )
data_stream = Rename(data_stream, {labels_type: 'labels'})
if labels_type in ['full_labels', 'phonemes']:
segment_sources += ('labels',)
elif labels_type in ['unaligned_phonemes', 'text']:
all_sources += ('labels_mask', )
data_stream = Batch(
data_stream, iteration_scheme=ConstantScheme(sorting_size))
data_stream = Mapping(data_stream, SortMapping(_length))
data_stream = Unpack(data_stream)
data_stream = Batch(
data_stream, iteration_scheme=ConstantScheme(batch_size))
data_stream = Filter(
data_stream, lambda x: _check_batch_size(x, batch_size))
data_stream = Padding(data_stream)
if use_speaker:
data_stream = FilterSources(
data_stream, all_sources + ('speaker_index',))
else:
data_stream = FilterSources(
data_stream, all_sources)
data_stream = SourceMapping(
data_stream, _transpose, which_sources=segment_sources)
# The conditional is not necessary, but I'm still adding it for clarity.
if raw_data:
data_stream = SourceMapping(
data_stream, _chunk, which_sources=raw_sources)
raw_transformer = get_raw_transformer(q_type, q_level)
data_stream = SourceMapping(
data_stream, raw_transformer, which_sources=raw_sources)
data_stream = SegmentSequence(
data_stream,
seq_size=seq_size + 1,
share_value=1,
return_last=False,
add_flag=True,
which_sources=segment_sources + raw_sources)
if noise_level is not None:
data_stream = AddConstantSource(
data_stream, noise_level, 'feedback_noise_level')
return data_stream
if __name__ == "__main__":
data_stream = parrot_stream(
'dimex', labels_type='text', seq_size=10,
batch_size=10, sorting_mult=1, check_ratio=False, raw_data=True)
print data_stream.sources
data_tr = next(data_stream.get_epoch_iterator())
for idx, source in enumerate(data_stream.sources):
if source not in ['start_flag', 'feedback_noise_level']:
print source, "shape: ", data_tr[idx].shape, \
source, "dtype: ", data_tr[idx].dtype
else:
print source, ": ", data_tr[idx]
# print next(data_stream.get_epoch_iterator())[-1]
# import ipdb; ipdb.set_trace()
# # For Arctic, the ratio is 18 steps of features per letter.
# data_tr = next(data_stream.get_epoch_iterator())
# ratios = (data_tr[1].sum(0) / data_tr[3].sum(1))
# print numpy.percentile(ratios, [0, 10, 25, 50, 75, 90, 99, 100])
# Arctic
# phonemes: array([ 12.84, 14.75, 15.56, 16.82, 18.16, 19.89, 48.8])
# text: array([ 8.2, 9.89, 10.39, 11.07, 11.91, 12.81, 24.4])
# Blizzard
# phonemes: array([ 6.26, 14.07, 15.11, 16.26, 17.60, 19.23, 103.33])
# text: array([4.37, 9.8, 10.64, 11.62, 12.59, 13.76, 46. ])
# VCTK
# phonemes: array([ 3., 12.39, 13.52, 15.03, 16.8, 18.96, 40.5])
# text: array([ 2.04, 8.43, 9.23, 10.28, 11.56, 13.03, 23.15])