-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Sorting algorithms #46
Labels
Comments
Merge sort
Main advantage
Drawbacks
Algorithm
# Python program for implementation of MergeSort
def mergeSort(arr):
if len(arr) > 1:
# Finding the mid of the array
mid = len(arr)//2
# Dividing the array elements
L = arr[:mid]
# into 2 halves
R = arr[mid:]
# Sorting the first half
mergeSort(L)
# Sorting the second half
mergeSort(R)
i = j = k = 0
# Copy data to temp arrays L[] and R[]
while i < len(L) and j < len(R):
if L[i] <= R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
# Checking if any element was left
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1 |
Insertion sort
Main advantages
Drawbacks
Algorithm
# Python program for implementation of Insertion Sort
# Function to do insertion sort
def insertionSort(arr):
# Traverse through 1 to len(arr)
for i in range(1, len(arr)):
key = arr[i]
# Move elements of arr[0..i-1], that are
# greater than key, to one position ahead
# of their current position
j = i-1
while j >= 0 and key < arr[j] :
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Sorting algorithms Time & Space complexity
The text was updated successfully, but these errors were encountered: