-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy patheval.py
85 lines (72 loc) · 2.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) 2021 Sony Corporation. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
MSS evaluation code on MUSDB18 test dataset.
'''
import test
import multiprocessing
import functools
import tqdm
import museval
import nnabla as nn
from nnabla.ext_utils import get_extension_context, import_extension_module
import musdb
from args import get_inference_args
def separate_and_evaluate(track, args, ext):
estimates = test.separate(track.audio, args)
if args.out_dir:
mus.save_estimates(estimates, track, args.out_dir)
scores = museval.eval_mus_track(
track, estimates, output_dir=args.out_dir
)
# clear cache memory
ext.clear_memory_cache()
return scores
if __name__ == '__main__':
# Get the arguments parser
args = get_inference_args()
# Set NNabla context and Dynamic graph execution
ctx = get_extension_context(args.context)
nn.set_default_context(ctx)
nn.set_auto_forward(True)
ext = import_extension_module(args.context)
mus = musdb.DB(
root=args.root,
download=args.root is None,
subsets='test',
is_wav=args.is_wav
)
if args.cores > 1:
pool = multiprocessing.Pool(args.cores)
results = museval.EvalStore()
scores_list = list(
pool.imap_unordered(
func=functools.partial(separate_and_evaluate, args, ext),
iterable=mus.tracks,
chunksize=1
)
)
pool.close()
pool.join()
for scores in scores_list:
results.add_track(scores)
else:
results = museval.EvalStore()
for track in tqdm.tqdm(mus.tracks):
scores = separate_and_evaluate(track, args, ext)
results.add_track(scores)
print(results)
method = museval.MethodStore()
method.add_evalstore(results, args.out_dir)
method.save(args.out_dir + '.pandas')