-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcontinue_train_both.py
103 lines (78 loc) · 4.03 KB
/
continue_train_both.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from tqdm import tqdm
import hydra
from hydra.utils import to_absolute_path
import model as Model
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.optim import Adam
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import AudioLoader.music.amt as MusicDataset
from omegaconf import OmegaConf
class DoubleDataset(torch.utils.data.Dataset):
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, i):
return tuple(d[i] for d in self.datasets)
def __len__(self):
return min(len(d) for d in self.datasets)
def train_dataloader(self):
concat_dataset = ConcatDataset(
datasets.ImageFolder(traindir_A),
datasets.ImageFolder(traindir_B)
)
loader = torch.utils.data.DataLoader(
concat_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True
)
return loader
@hydra.main(config_path="config", config_name="unsupervised_pretrained")
def main(cfg):
# force it to train with two losses
if len(cfg.task.loss_keys)==1:
cfg.task.loss_keys = ['diffusion_loss', 'unconditional_diffusion_loss']
cfg.data_root = to_absolute_path(cfg.data_root)
cfg.pretrained_path = to_absolute_path(cfg.pretrained_path)
# convert Omega list into python list
# Otherwise groups argument won't work in MAPS dataset
train_set1 = getattr(MusicDataset, cfg.dataset.name1)(**OmegaConf.to_container(cfg.dataset.train1, resolve=True))
train_set2 = getattr(MusicDataset, cfg.dataset.name2)(**cfg.dataset.train2)
concat_trainset = DoubleDataset(train_set1, train_set2)
val_set1 = getattr(MusicDataset, cfg.dataset.name1)(**cfg.dataset.val1)
val_set2 = getattr(MusicDataset, cfg.dataset.name2)(**cfg.dataset.val2)
concat_valset = DoubleDataset(val_set1, val_set2)
test_set = getattr(MusicDataset, cfg.dataset.name1)(**cfg.dataset.test)
train_loader = DataLoader(concat_trainset, **cfg.dataloader.train)
val_loader = DataLoader(concat_valset, **cfg.dataloader.val)
test_loader = DataLoader(test_set, **cfg.dataloader.test)
# Model
model = getattr(Model, cfg.model.name).load_from_checkpoint(checkpoint_path=cfg.pretrained_path,\
**cfg.model.args, spec_args=cfg.spec.args, **cfg.task)
if cfg.model.name == 'DiffRollBaseline':
name = f"BothPretrained-{cfg.model.name}-L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"t={cfg.task.time_mode}-x_t={cfg.task.x_t}-{cfg.dataset.name1}"
elif cfg.model.name == 'ClassifierFreeDiffRoll':
name = f"BothPretrained-{cfg.model.name}-L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"beta{cfg.task.beta_end}-{cfg.task.training.mode}-" + \
f"{cfg.task.sampling.type}-w={cfg.task.sampling.w}-" + \
f"p={cfg.model.args.spec_dropout}-k={cfg.model.args.kernel_size}-" + \
f"dia={cfg.model.args.dilation_base}-{cfg.model.args.dilation_bound}-"
else:
name = f"BothPretrained-{cfg.model.name}-{cfg.task.sampling.type}-L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"beta{cfg.task.beta_end}-{cfg.task.training.mode}-" + \
f"dilation{cfg.model.args.dilation_base}-{cfg.task.loss_type}-{cfg.dataset.name1}"
optimizer = Adam(model.parameters(), lr=1e-3)
checkpoint_callback = ModelCheckpoint(**cfg.modelcheckpoint)
logger = TensorBoardLogger(save_dir=".", version=1, name=name)
trainer = pl.Trainer(**cfg.trainer,
callbacks=[checkpoint_callback,],
logger=logger)
trainer.fit(model, train_loader, val_loader)
trainer.test(model, test_loader)
if __name__ == "__main__":
main()