forked from psteinb/n2v
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
executable file
·59 lines (49 loc) · 1.72 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from __future__ import absolute_import
from setuptools import setup, find_packages
from os import path
_dir = path.abspath(path.dirname(__file__))
with open(path.join(_dir,'n2v','version.py')) as f:
exec(f.read())
with open(path.join(_dir,'README.md')) as f:
long_description = f.read()
setup(name='n2v',
version=__version__,
description='Noise2Void allows the training of a denoising CNN from individual noisy images. This implementation'
'extends CSBDeep.',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/juglab/n2v/',
author='Tim-Oliver Buchholz, Alexander Krull',
author_email='[email protected], [email protected]',
license='BSD 3-Clause License',
packages=find_packages(),
project_urls={
'Repository': 'https://github.com/juglab/n2v/',
},
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
],
scripts=['scripts/trainN2V.py',
'scripts/predictN2V.py'
],
install_requires=[
"numpy",
"scipy",
"matplotlib",
"six",
"keras>=2.2.4,<2.3.0",
"tifffile",
"tqdm",
"pathlib2;python_version<'3'",
"backports.tempfile;python_version<'3.4'",
"csbdeep>=0.4.0,<0.5.0",
"Pillow"
]
)