-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieve_lsc_registration.py
39 lines (30 loc) · 1.4 KB
/
retrieve_lsc_registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
url = 'https://docs.google.com/spreadsheets/d/1JEPvB62RJ1w15b4VAclWQcyNSOjrPVmBW68EyYT0Q00/export?format=csv&gid=1188631267'
df = pd.read_csv(url)
winning_teams_dict = {}
winning_teams_dict['MAG240M-LSC'] = ['BD-PGL', 'Academic', 'Synerise AI', 'Topology_mag', 'passages', 'DeeperBiggerBetter']
winning_teams_dict['WikiKG90M-LSC'] = ['BD-PGL', 'OhMyGod', 'GraphMIRAcles', 'littleant', 'vcdbro', 'JohnZheng']
winning_teams_dict['PCQM4M-LSC'] = ['MachineLearning', 'SuperHelix', 'Quantum', 'DIVE@TAMU', 'no_free_lunch', 'GNNLearner']
dataset_list = ['MAG240M-LSC', 'WikiKG90M-LSC', 'PCQM4M-LSC']
for dataset in dataset_list:
print('=======', dataset)
for team in winning_teams_dict[dataset]:
print(team)
tf = np.logical_and(df['Dataset'] == dataset, df['Team name'] == team)
tf = np.logical_and(df['Ignore'] != df['Ignore'], tf)
idx = tf.to_numpy().nonzero()[0]
assert len(idx) == 1
idx = idx[0]
contact = df['Email Address'][idx]
name_list = []
for i in range(1, 11):
info = df[f'Team member ({i})'][idx]
if info != info:
break
name = info.split(',')[0]
aff = info.split(',')[1]
name_list.append(f'{name} ({aff})')
print('Contact: ', contact)
print(', '.join(name_list))
print('')