-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathargparser.py
577 lines (532 loc) · 27.7 KB
/
argparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import argparse
import sys, os
sys.path.append(os.path.join(os.path.dirname("__file__"), '..'))
sys.path.append(os.path.join(os.path.dirname("__file__"), '..', '..'))
from lamp.pytorch_net.util import str2bool
def arg_parse():
parser = argparse.ArgumentParser(description='PDE argparse.')
# Experiment management:
parser.add_argument('--exp_id', type=str,
help='Experiment id')
parser.add_argument('--date_time', type=str,
help='date and time')
parser.add_argument('--decoder_act_name', type=str,
help='decoder_act_name')
parser.add_argument('--prioritized_dropout', type=str,
help="prioritized_dropout. Choose from 'None' or an integer in terms of a string.")
parser.add_argument('--save_interval', type=int,
help='Interval for saving the model_dict.')
parser.add_argument('--test_interval', type=int,
help='Interval for val and test.')
parser.add_argument('--save_iterations', type=int,
help='Iterations at which model is saved, -1 means not saved in the middle of an epoch')
parser.add_argument('--verbose', type=int,
help='How much to print. Default "1". "2" for printing over minibatches')
parser.add_argument('--is_test_only', type=str2bool, nargs='?', const=True, default=False,
help="If True, will only load the test dataset and test_loader")
parser.add_argument('--is_tensorboard', type=str2bool, nargs='?', const=True, default=False,
help="If True, use Tensorboard to record.")
parser.add_argument('--wandb', type=eval,
help='boolean on whether to use wandb')
parser.add_argument('--wandb_project_name', type=str,
help='wandb project name.')
parser.add_argument('--wandb_step', type=int,
help='wandb project log num freq.')
parser.add_argument('--wandb_step_plot', type=int,
help='wandb project plot freq.')
parser.add_argument('--is_timing', type=int,
help="If True, will print out timing. Use level of 0,1,2,...")
parser.add_argument('--is_unittest', type=str2bool, nargs='?', const=True, default=True,
help="If True, perform unittest")
parser.add_argument('--seed', type=int,
help="Seed for the experiment. Default None which do not set a fixed seed.")
parser.add_argument('--id', type=str,
help='ID, additional information for distinguishing the experiment.')
# Loading previous experiments:
parser.add_argument('--load_dirname', type=str,
help='Directory to load previous experiment from.')
parser.add_argument('--load_filename', type=str,
help='Filename to load previous experiment from.')
parser.add_argument('--load_exp_renew', type=str2bool, nargs='?', const=True, default=False,
help="If True, reset the data_record and epoch.")
# Dataset:
parser.add_argument('--dataset', type=str,
help='Dataset. Choose from "burgers[...]", "ks[...]", "karman-2d", "advection", "VL-small2", "VL-large", "PL-1Dsmall" and "PL-1Dlarge".')
parser.add_argument('--dataset_split_type', type=str,
help='Split type for the dataset. Choose from "standard", "random".')
parser.add_argument('--data_noise_amp', type=float,
help='Gaussian noise amplitude for dataset. Default 0')
parser.add_argument('--train_fraction', type=float,
help='fraction of training inside train_val.')
parser.add_argument('--time_interval', type=int,
help='Time interval of sampling the data. Default 1.')
parser.add_argument('--n_train', type=str,
help='The first n_train examples will be used for the dataset. If -1, will use the full dataset.')
parser.add_argument('--data_dropout', type=str,
help='Dropout mode for PyG graph. Choose from "None", e.g. "node:0.4"')
parser.add_argument('--exclude_bdd', type=eval,
help='If True, when doing the data_dropout=node:..., will not dropout the boundary nodes.')
parser.add_argument('--sector_size', type=str,
help='Size of the sector. Default "-1".')
parser.add_argument('--sector_stride', type=str,
help='Stride for the sectors. Default "-1".')
parser.add_argument('--is_y_variable_length', type=str2bool, nargs='?', const=False, default=False,
help='Whether to use difference as y.')
# Model:
## Global:
parser.add_argument('--algo', type=str,
help='Algorithm to use. Choose from "contrast" and "gns".')
parser.add_argument('--latent_size', type=int,
help='Hidden dimension of GNN.')
parser.add_argument('--act_name', type=str,
help='activation name.')
parser.add_argument('--decoder_last_act_name', type=str,
help="Decoder's last layer's activation name.")
## Regularization:
parser.add_argument('--reg_type', type=str,
help='Regularization. Default "None". Has the format of f"{reg-type}[-{model-target}]^..." as splited by "^" for different types of regularizations.'
'where {reg-type} chooses from "srank", "sn", "snn", "Jsim" (Jacobian simplicity), "l2", "l1", "fro".'
'The optional {model-target} chooses from "all" or "evo" (only effective for Contrastive). If not appearing, default "all".'
'The "Jsim" only targets "evo".')
parser.add_argument('--reg_coef', type=float,
help='Coefficient for regularization.')
parser.add_argument('--is_reg_anneal', type=str2bool, nargs='?', const=True, default=False,
help="If True, will anneal up the regularization from 0 quadratically to reg_coef at epoch.")
## For CNN and hybrid:
parser.add_argument('--channel_mode', type=str,
help='channel_mode. Choose from "exp-{NUM}", "c-{NUM}", "{NUM}-{NUM}-...".')
parser.add_argument('--kernel_size', type=int,
help='Kernel size.')
parser.add_argument('--stride', type=int,
help='stride.')
parser.add_argument('--padding', type=int,
help='padding.')
parser.add_argument('--padding_mode', type=str,
help="padding_mode. Choose from 'zeros', 'reflect', 'replicate' or 'circular'")
parser.add_argument('--output_padding_str', type=str,
help="output_padding_str. Choose from 'None', or e.g. '1-0-0-0', '1-1-0-0'.")
parser.add_argument('--evo_groups', type=int,
help="Number of groups for evolution_op.")
## For evolution operator:
parser.add_argument('--evolution_type', type=str,
help="evolution_type for Contrastive."
"Format: (1) mlp-{n_layers}[-{act_name}][-{n_linear_layers}], or"
" (2) SINDy-{poly_order}[-{additional_nonlinearities}][-{n_linear_layers}]"
"E.g. 'mlp-3' where the number is the number of layers.")
parser.add_argument('--forward_type', type=str,
help="forward_type for evolution_op. Choose from 'Euler', 'RK4'.")
## For mixture distributions:
parser.add_argument('--decoder_type', type=str,
help='decoder_type. Format: "MixGau-full-10" where the number is the number of components.')
## For gns:
parser.add_argument('--layer_type', type=str,
help='layer_type for GNN. Choose from "graphsage".')
parser.add_argument('--n_layers', type=int,
help='Number of graph convolution layers.')
parser.add_argument('--dropout', type=float,
help='The dropout ratio.')
parser.add_argument('--static_latent_size', type=int, default=0,
help='dimension of latent vector of static featurs.')
parser.add_argument('--static_encoder_type', type=str, default="None",
help='encoder type of converting static featurs to latent vectors.')
## For gnnremesher:
parser.add_argument('--noise_amp', type=float, help='std of gaussian noise added to corrupt fluid models input')
parser.add_argument('--rescale', type=float, default=0.1,
help='recale factor of the final GNN output')
parser.add_argument('--min_edge_size', type=float, default=0.0005,
help='minimal edge size')
# Training:
parser.add_argument('--is_pretrain_autoencode', type=str2bool, nargs='?', const=True, default=False,
help="If True, reset the data_record and epoch.")
parser.add_argument('--vae_mode', type=str,
help="Choose from 'None', 'recons', 'recons+sample'.")
parser.add_argument('--vae_beta', type=float,
help="beta value for the VAE's KL term.")
parser.add_argument('--epochs_pretrain', type=int,
help='Pretrain epochs')
parser.add_argument('--dp_mode', type=str,
help='Choose from "None", "dp", "ddp"')
parser.add_argument('--zero_weight', type=float,
help='weight for the ground-truth elements that has value 0.')
parser.add_argument('--input_steps', type=int,
help='Number of input steps')
parser.add_argument('--temporal_bundle_steps', type=int,
help='Number of temporal bundle steps. Default 1 (no bundle)')
parser.add_argument('--is_multistep_detach', type=str2bool, nargs='?', const=True, default=False,
help='If True, will detach when doing multistep.')
parser.add_argument('--input_steps_lazy', type=bool,
help='Whether to materialize input_steps dimension data after preprocessing, avoiding out-of-memory errors')
parser.add_argument('--multi_step', type=str,
help='Multi-step prediction mode. Default "1", meaning only 1 step MSE. "1^2:1e-2^4:1e-3" means loss has 1, 2, 4 steps, with the number after ":" being the scale.')
parser.add_argument('--multi_step_start_epoch', type=int,
help='Starting epoch for multi_step. Before that, use single step.')
parser.add_argument('--use_grads', type=str2bool, nargs='?', const=True,
help='whether to use data gradient as feature.')
parser.add_argument('--use_pos', type=str2bool, nargs='?', const=True,
help='whether to use normalized position data to augment the features.')
parser.add_argument('--is_y_diff', type=str2bool, nargs='?', const=False,
help='Whether to use difference as y.')
parser.add_argument('--epsilon_latent_loss', type=float,
help='epsilon added to the denominator of latent loss with "target" or "targetindi".')
parser.add_argument('--loss_type',
help='loss type. Choose from "mse", "huber", "l1", "dl".')
parser.add_argument('--loss_type_consistency',
help='loss type on the latent space. Choose from "mse", "huber", "l1", "dl".')
parser.add_argument('--latent_loss_normalize_mode',
help='Choose from "None", "target", "targetindi".')
parser.add_argument('--batch_size', type=int,
help='Batch size for training')
parser.add_argument('--n_workers', type=int,
help='Number of workers')
parser.add_argument('--val_batch_size', type=int,
help='Batch size for validation and test.')
parser.add_argument('--epochs', type=int,
help='Number of epochs to train.')
parser.add_argument('--early_stopping_patience', type=int,
help='Patience for early_stopping.')
parser.add_argument('--opt', type=str,
help='Optimizer such as adam, sgd, rmsprop or adagrad.')
parser.add_argument('--weight_decay', type=float,
help='Weight decay.')
parser.add_argument('--is_clip_grad', type=eval,
help="If True, will clip gradient according to exp_avg_sq.")
parser.add_argument('--lr', type=float,
help='Learning rate.')
parser.add_argument('--lr_special', type=str,
help='Setting special learning rate for optimization. Example: "decoder+evolution_op:1e-3^encoder:1e-2".')
parser.add_argument('--lr_min_cos', type=float,
help='Minimal learning rate for cosine scheduler.')
parser.add_argument('--lr_scheduler_type', type=str,
help='type of the lr-scheduler. Choose from "rop", "cos", "cos-re", "steplr-s100-g0.5" (e.g.) and "None".')
parser.add_argument('--lr_scheduler_factor', type=float, default=0.1,
help='Multiplication factor for ReduceOnPlateau lr-scheduler.')
parser.add_argument('--lr_scheduler_T0', type=int, default=50,
help='T0 for CosineAnnealingWarmRestarts (cos-re) scheduler')
parser.add_argument('--lr_scheduler_T_mult', type=int, default=1,
help='Multiplication factor for increasing T_i after a restart, for CosineAnnealingWarmRestarts (cos-re) scheduler.')
parser.add_argument('--gpuid', type=str,
help='gpu id or comma-delimited gpu ids.')
parser.add_argument('--max_grad_norm', type=float, default=-1,
help='maximul gradient L2 norm. Default -1 of not using the grad norm.')
# For GNNremesher:
parser.add_argument('--layer_norm', type=str2bool, nargs='?', const=False, default=False,
help="If True, perform layer_norm")
parser.add_argument('--batch_norm', type=str2bool, nargs='?', const=False, default=False,
help="If True, perform batch_norm")
parser.add_argument('--is_mesh', type=str2bool, nargs='?', const=False, default=False,
help="If True, unittest pass through is_mesh branch.")
parser.add_argument('--edge_attr', type=str2bool, nargs='?', const=False, default=True,
help="If True, edge attributes will be used in processor.")
parser.add_argument('--edge_threshold', type=float, default=0.,
help="If > 0, world edges are added.")
parser.add_argument('--correction_rate', type=float, default=0.,
help="If > 0, it will correct output of gnn skewed by noise added to node position.")
parser.add_argument('--is_shifted_data', type=eval,
help="If True, initial mesh will have an effect of velocity.")
parser.add_argument('--use_fineres_data', type=eval,
help="If True, use fine resolution data as training data.")
parser.add_argument('--uncertainty_mode', type=str,
help="Mode for uncertainty. Choose from e.g. 'None', 'diag^full', 'diag^sub-100:28'")
parser.set_defaults(
exp_id="contrast",
date_time="1-1",
save_interval=10,
test_interval=1,
save_iterations=-1,
verbose=1,
seed=-1,
id="0",
is_tensorboard=False,
wandb=False,
wandb_step_plot=100,
wandb_step=20,
wandb_project_name="test",
is_unittest=True,
is_timing=0,
# Loading previous experiments:
load_dirname="None",
load_filename="None",
load_exp_renew=False,
# Dataset:
dataset='burgers', # 'burgers', 'karman-2d', 'advection', 'PL-1Dsmall', 'PL-1Dlarge'
dataset_split_type="standard",
train_fraction=float(8/9),
n_train="-1",
time_interval=1,
data_noise_amp=0.,
data_dropout="None",
exclude_bdd=False,
sector_size="-1",
sector_stride="-1",
is_test_only=False,
is_y_variable_length=False,
## Reg:
reg_type="None",
reg_coef=0,
is_reg_anneal=True,
## Model:
algo='contrast', # 'contrast', 'gns'
latent_size=16,
normalization_type="gn",
channel_mode="exp-16",
n_layers=3,
dropout=0.0,
act_name="rational",
decoder_last_act_name="linear",
prioritized_dropout="None",
decoder_act_name="None",
## For ComponentDGL:
gnn_mlp_n_neurons=64,
## For SupernodeDGL:
reinit_mode="None",
update_targets="mean+cov",
loss_components="nllc+msec",
loss_scaling="1:100:1",
## For gnnremesher:
layer_norm=False,
batch_norm=False,
edge_attr=True,
edge_threshold=0.,
correction_rate=0.,
rescale=1.,
min_edge_size=0.00005,
is_shifted_data=False,
use_fineres_data=False,
noise_amp=0.,
uncertainty_mode="None",
## Static features:
static_latent_size=0,
static_encoder_type="None",
## Training:
is_pretrain_autoencode=False,
vae_mode="None",
vae_beta=1,
epochs_pretrain=0,
dp_mode="None",
is_mesh=False,
zero_weight=1,
input_steps=1,
input_steps_lazy=False,
temporal_bundle_steps=1,
is_multistep_detach=False,
multi_step="1^2:0.1^3:0.1^4:0.1", #"1^2:0.1^3:0.1^4:0.1", "1"
multi_step_start_epoch=0,
latent_loss_normalize_mode="None",
use_grads=True,
use_pos=False,
is_y_diff=False,
epsilon_latent_loss=0,
loss_type="mse",
loss_type_consistency="mse",
batch_size=16,
val_batch_size=64,
n_workers=4,
epochs=100,
opt='adam',
weight_decay=0,
early_stopping_patience=-1,
is_clip_grad=False,
lr=1e-3,
lr_special="None",
lr_min_cos=0,
lr_scheduler_type="cos", # "rop", "cos", "cos-re"
lr_scheduler_factor=0.1,
lr_scheduler_T0=50,
lr_scheduler_T_mult=1,
max_grad_norm=-1,
gpuid="0",
)
add_rl_args(parser)
try:
get_ipython().run_line_magic('matplotlib', 'inline')
args = parser.parse_args([])
except:
args = parser.parse_args()
args.lr_scheduler_T0 = args.epochs // 8
return args
def add_rl_args(parser):
parser.add_argument('--rl_coefs', type=str,
help='Coefficients for rl. Choose from "None", "reward:1+value:0.1" e.g..')
parser.add_argument('--rl_horizon', type=int,
help='Horizon for RL.')
parser.add_argument('--reward_mode', type=str,
help='Reward mode. Choose from "None" (loss+time), "loss+state".')
parser.add_argument('--reward_beta', type=str,
help='beta on the reward=loss + beta * compute. E.g. "1", "0.5-2".')
parser.add_argument('--reward_loss_coef', type=float,
help='reward_loss_coef on the reward=loss * reward_loss_coef + beta * compute. E.g. "1", "0.5-2".')
parser.add_argument('--reward_src', type=str,
help='src of reward. Choose from "pred" or "env".')
parser.add_argument('--rl_gamma', type=float,
help='gamma as the discount factor.')
parser.add_argument('--rl_lambda', type=float,
help='lambda for the coefficient of value function.')
parser.add_argument('--rl_rho', type=float,
help='rho for the coefficient of the Reinforce loss, and (1-reward_rho) for the dynamics loss.')
parser.add_argument('--rl_eta', type=float,
help='eta for the coefficient of the entropy for the actor loss.')
parser.add_argument('--rl_critic_update_iterations', type=int,
help="How many iteration steps to update the critic_target.")
parser.add_argument('--rl_data_dropout', type=str,
help='Dropout mode for PyG graph for RL. Choose from "None", e.g. "node:0.4", "node:0-0.1:0.1" (prob of 0.1 to perform dropout. If dropout, drop 0-0.1 fraction of nodes)')
parser.add_argument('--rl_is_finetune_evolution', type=eval,
help="Whether to train the evolution model at the same time.")
parser.add_argument('--rl_is_alt_remeshing', type=eval,
help="Whether to use the remeshed result for alt before doing next step.")
parser.add_argument('--top_k_action', type=int,
help="top_k_action selected to sample")
parser.add_argument('--opt_evl_horizon', type=int,
help="opt_evl_horizon")
parser.add_argument('--evl_stop_gradient', type=eval,
help="evl_stop_gradient")
parser.add_argument('--actor_lr', type=float,
help="Learning rate for value model.")
parser.add_argument('--actor_batch_norm', type=eval,
help="batch_norm for Value_Model.")
parser.add_argument('--skip_coarse', type=eval,
help="batch_norm for Value_Model.")
parser.add_argument('--skip_split', type=eval,
help="batch_norm for Value_Model.")
parser.add_argument('--skip_flip', type=eval,
help="skip_flip.")
parser.add_argument('--value_latent_size', type=int,
help="latent_size for Value_Model.")
parser.add_argument('--value_num_pool', type=int,
help="num_pool for Value_Model.")
parser.add_argument('--value_act_name', type=str,
help="act_name for Value_Model.")
parser.add_argument('--value_act_name_final', type=str,
help="act_name_final for Value_Model.")
parser.add_argument('--value_layer_norm', type=eval,
help="layer_norm for Value_Model.")
parser.add_argument('--value_batch_norm', type=eval,
help="batch_norm for Value_Model.")
parser.add_argument('--value_num_steps', type=int,
help="num_steps for Value_Model.")
parser.add_argument('--value_pooling_type', type=str,
help="pooling_type for Value_Model.")
parser.add_argument('--value_lr', type=float,
help="Learning rate for value model.")
parser.add_argument('--value_loss_type', type=str,
help="Loss_type for value model.")
parser.add_argument('--value_loss_coef', type=float,
help="Coefficient for the loss for value model.")
parser.add_argument('--test_value_model', type=eval,
help="test Value_Model.")
parser.add_argument('--value_target_mode', type=str,
help="Mode for value target. Choose from 'value-lambda', 'vanilla', 'value-n-step'.")
parser.add_argument('--use_reward_vanilla', type=eval,
help="use_reward_vanilla - no recursion")
parser.add_argument('--reward_condition', type=eval,
help="reward_condition")
parser.add_argument('--is_alternating_train', type=eval,
help="is_alternating_train")
parser.add_argument('--is_single_action', type=eval,
help="only one action per state")
parser.add_argument('--value_steps', type=int,
help="value_steps")
parser.add_argument('--actor_steps', type=int,
help="actor_steps")
parser.add_argument('--test_data_interp', type=eval,
help="if plot interp forward result")
parser.add_argument('--actor_critic_step', type=int,
help="actor_critic_step")
parser.add_argument('--evolution_steps', type=int,
help="evolution_steps")
parser.add_argument('--offset_coarse', type=float,
help="policy offset_coarse as prior")
parser.add_argument('--offset_split', type=float,
help="policy offset_split as prior")
parser.add_argument('--rl_finetune_evalution_mode', type=str,
help="rl_finetune_evalution_mode")
parser.add_argument('--max_action', type=int,
help="max_action")
parser.add_argument('--kaction_pooling_type', type=str,
help="kaction_pooling_type")
parser.add_argument('--connect_bdd', type=eval,
help="if connect the bdd nodes for periodic boundary condition")
parser.add_argument('--stop_all_gradient', type=eval,
help="if stop_all_gradient")
parser.add_argument('--is_eval_sample', type=eval,
help="if is_eval_sample ")
parser.add_argument('--debug', type=eval,
help="if debug mode ")
parser.add_argument('--fine_tune_gt_input', type=eval,
help="if fine_tune_gt_input")
parser.add_argument('--soft_update', type=eval,
help="if soft_update")
parser.add_argument('--share_processor', type=eval,
help="if share_processor")
parser.add_argument('--policy_input_feature',type=str,
help="input feature for policy network")
parser.add_argument('--load_hash',type=str,
help="load hash")
parser.add_argument('--test_reward_random_sample', type=eval,
help="if test_reward_random_sample")
parser.add_argument('--processor_aggr', type=str,
help="if max")
parser.add_argument('--fix_alt_evolution_model', type=eval,
help="if fix_alt_evolution_model")
parser.set_defaults(
rl_coefs="None",
rl_horizon=4,
reward_mode="lossdiff+statediff",
reward_beta="0.5",
reward_loss_coef=5,
reward_src="env",
rl_lambda=0.95,
rl_gamma=0.99,
rl_rho=1.,
rl_eta=1e-4,
rl_critic_update_iterations=100,
rl_data_dropout="None",
rl_is_finetune_evolution=False,
rl_finetune_evalution_mode=None,
actor_critic_step=None,
evolution_steps=None,
rl_is_alt_remeshing=False,
is_single_action=False,
top_k_action=1,
actor_lr=5e-4,
actor_batch_norm=False,
skip_coarse=False,
skip_split=False,
skip_flip=False,
evl_stop_gradient=False,
value_latent_size=32,
value_num_pool=1,
value_act_name="elu",
value_act_name_final="linear",
value_layer_norm=False,
value_batch_norm=False,
value_num_steps=3,
value_pooling_type="global_mean_pool",
value_lr=1e-4,
value_loss_type="mse",
value_loss_coef=0.5,
value_target_mode="value-lambda",
test_value_model=False,
use_reward_vanilla=False,
is_alternating_train=False,
is_eval_sample=True,
value_steps=None,
actor_steps=None,
test_data_interp=False,
offset_coarse=0.,
offset_split=0.,
reward_condition=False,
kaction_pooling_type="global_mean_pool",
max_action=5,
opt_evl_horizon=-1,
connect_bdd=False,
stop_all_gradient=True,
debug=False,
fine_tune_gt_input=False,
soft_update=False,
policy_input_feature="velocity",
test_reward_random_sample=False,
share_processor=True,
processor_aggr="max",
fix_alt_evolution_model=False,
load_hash="None",
)