Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError: 'tuple' object has no attribute 'dim' #5

Open
pensive-bubble opened this issue Jan 12, 2025 · 21 comments
Open

AttributeError: 'tuple' object has no attribute 'dim' #5

pensive-bubble opened this issue Jan 12, 2025 · 21 comments

Comments

@pensive-bubble
Copy link

Hello again,

I have run into a further error while trying to run disease critical network demo. Tuple object causing further issues.

DA93AA7A-AB70-483D-9D92-B557BCFBC94E

If you know how to fix this, it would be greatly appreciated!
Natasha

@kexinhuang12345
Copy link
Collaborator

Hi! are you using exactly the same code as in the demo? same model/gwas sumstats as well?

@pensive-bubble
Copy link
Author

Hi! are you using exactly the same code as in the demo? same model/gwas sumstats as well?

Hello! I wasn't, I was using my own GWAS, but I've just tried it with the same model/gwas sumstats and have run into the same error.

@skoc
Copy link
Collaborator

skoc commented Jan 17, 2025

Hi @pensive-bubble , can you make this small change and try again:

x_dict = {i: j[0] for i,j in x_dict.items()}

That line will be:
x_dict = {i: j[0][0] for i,j in x_dict.items()}

@pensive-bubble
Copy link
Author

Hi @pensive-bubble , can you make this small change and try again:

KGWAS/kgwas/utils.py

Line 461 in 68d6f60

x_dict = {i: j[0] for i,j in x_dict.items()}

That line will be:
x_dict = {i: j[0][0] for i,j in x_dict.items()}

Hello, I tried both on my GWAS and on the test one. I ended up with a fun new error.
Image

@Himanshu-at-bayer
Copy link

Hi team, I am also having the same error while running the sample code :(

Image

@skoc
Copy link
Collaborator

skoc commented Feb 12, 2025

Hi @pensive-bubble , can you make this small change and try again:
KGWAS/kgwas/utils.py
Line 461 in 68d6f60
x_dict = {i: j[0] for i,j in x_dict.items()}
That line will be:
x_dict = {i: j[0][0] for i,j in x_dict.items()}

Hello, I tried both on my GWAS and on the test one. I ended up with a fun new error. Image

Thank you @pensive-bubble for the follow-up! Can make this pd concat change in your local version and try again:

# Instead of:
df_val_all = df_val_all.append(df_val)

# Use:
import pandas as pd
df_val_all = pd.concat([df_val_all, df_val], ignore_index=True)

Hey @Himanshu-at-bayer, you can also try x_dict = {i: j[0][0] for i,j in x_dict.items()} and pd concat change after that.

utils has multiple df_x.append(df_y) cases, changes has to be applied all

@Himanshu-at-bayer
Copy link

Thanks for the response and help. The first got removed after all the amendments you suggested but now got a new error

Retrieving weights...
Aggregating across node types...
Start generating disease critical network...
No filters... Using all genes and gene programs...

local/lib/python3.10/site-packages/kgwas/utils.py:590: FutureWarning: The provided callable <function std at 0x7f6dac644f70> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
rel2std = snp2genes_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})

ValueError Traceback (most recent call last)
Cell In[6], line 1
----> 1 df_network_weight, df_variant_interpretation, disease_critical_network = run.get_disease_critical_network(variant_threshold = 5e-8,
2 magma_path = None,
3 magma_threshold = 0.05,
4 program_threshold = 0.05,K_neighbors = 3,
5 num_cpus = 10)

File ~/.local/lib/python3.10/site-packages/kgwas/kgwas.py:272, in KGWAS.get_disease_critical_network(self, variant_threshold, magma_path, magma_threshold, program_threshold, K_neighbors, num_cpus)
268 def get_disease_critical_network(self, variant_threshold = 5e-8,
269 magma_path = None, magma_threshold = 0.05, program_threshold = 0.05,
270 K_neighbors = 3, num_cpus = 1):
271 df_network_weight = get_network_weight(self, self.data)
--> 272 df_variant_interpretation, disease_critical_network = generate_viz(self, df_network_weight, self.data_path, variant_threshold, magma_path, magma_threshold, program_threshold, K_neighbors, num_cpus)
273 return df_network_weight, df_variant_interpretation, disease_critical_network

File ~/.local/lib/python3.10/site-packages/kgwas/utils.py:600, in generate_viz(run, df_network, data_path, variant_threshold, magma_path, magma_threshold, program_threshold, K_neighbors, num_cpus)
598 v2g_hit = v2g_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
599 v2g_hit.loc[:,'rel_type'] = v2g_hit.rel_type.apply(lambda x: x[4:])
--> 600 v2g_hit.loc[:,'Category'] = 'V2G'
602 v2g_hit.loc[:,'h_id'] = v2g_hit['h_idx'].apply(lambda x: idx2id['Gene'][x])
603 v2g_hit.loc[:,'t_id'] = v2g_hit['t_idx'].apply(lambda x: idx2id['SNP'][x])

File ~/.local/lib/python3.10/site-packages/pandas/core/indexing.py:911, in _LocationIndexer.setitem(self, key, value)
908 self._has_valid_setitem_indexer(key)
910 iloc = self if self.name == "iloc" else self.obj.iloc
--> 911 iloc._setitem_with_indexer(indexer, value, self.name)

File ~/.local/lib/python3.10/site-packages/pandas/core/indexing.py:1847, in _iLocIndexer._setitem_with_indexer(self, indexer, value, name)
1845 if not len(self.obj):
1846 if not is_list_like_indexer(value):
-> 1847 raise ValueError(
1848 "cannot set a frame with no "
1849 "defined index and a scalar"
1850 )
1851 self.obj[key] = value
1852 return

ValueError: cannot set a frame with no defined index and a scalar

@Himanshu-at-bayer
Copy link

This is line 590 in my case:

rel2std = snp2genes_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})

@jhchung
Copy link

jhchung commented Feb 14, 2025

I am also encountering this problem when there are no significant SNPs in the output. Some changes that seem to work (in addition to those already shared):

In the utils.py file, update lines 596, 613, and 631 to use assign instead of directly creating a new column.

For example, for line 596

# Old
v2g_hit.loc[:,'Category'] = 'V2G'

# Updated
v2g_hit = v2g_hit.assign(Category='V2G')

There is also a bug where the variant_threshold option in `get_disease_critical_network is not correctly used.

The GWAS P threshold is hardcoded in utils.py line 546

# Old 
hit_snps = gwas[gwas.P < 5e-8].SNP.values

# Updated
hit_snps = gwas[gwas.P < variant_threshold].SNP.values

@kexinhuang12345
Copy link
Collaborator

Nice! @jhchung would you like to make a PR for this? no worries if not, thanks!

@jhchung
Copy link

jhchung commented Feb 14, 2025

I need to do some additional testing to make sure these changes resolve the issue. but happy to make a PR when ready.

@kexinhuang12345
Copy link
Collaborator

Great - thank you!!

@Himanshu-at-bayer
Copy link

Thanks for the fix! Now at least I can run the codes.
However, I am not able to grasp the output of run.get_disease_crtiical_network :(
a. I can't reproduce the demo analysis even though I am running the same line of codes
b. df_variant_interpretation and disease_critical_network are returning empty even with low threshold cutoff for variant_threshold paramters.
c. How did you plotted the figures of variants connected with diseases/GO/other variants in the publication?

@jhchung
Copy link

jhchung commented Feb 18, 2025

I am also getting the same problem of no output using the test dataset.

I do see a warning that pops up which may be related to the pandas version. I have pandas v2.2.3 installed.

lib/python3.12/site-packages/kgwas/utils.py:591: FutureWarning: The provided callable <function std at 0x2aba9b549a80> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.

@jhchung
Copy link

jhchung commented Feb 19, 2025

I believe the problem is in the get_network_weight function in utils.py. I added a bunch of print statements for debugging purposes and ran this step from the tutorial. I think the problem is that h_idx and t_idx and weight are not correctly extracted (maybe?)

df_network_weight, df_variant_interpretation, disease_critical_network = run.get_disease_critical_network(
    variant_threshold = 5e-8, 
    magma_path = None,
    magma_threshold = 0.05,
    program_threshold = 0.05,
    K_neighbors = 3,
    num_cpus = 1
)
Retrieving weights...
Aggregating across node types...
get_network_weights - aggregate node_type: SNP
get_network_weights - aggregate node_type: CellularComponent
get_network_weights - aggregate node_type: BiologicalProcess
get_network_weights - aggregate node_type: MolecularFunction
get_network_weights - aggregate node_type: Gene
get_network_weights - rel:
('Gene', 'rev_ABC', 'SNP')
get_network_weights - value:
[[-2.0716644e-03 -3.1249187e-04  3.9275470e-03 -1.5760920e-03
   1.6780517e-03 -3.4461175e-03  2.5265825e-03 -1.0672063e-03
   4.0031904e-03 -1.0308591e-03  3.7549750e-04  3.1278137e-04
   1.5559015e-06 -8.3525910e-04  1.1605183e-03  7.4588216e-04
   3.3852728e-03  3.1510936e-05 -5.1043357e-04 -5.4528105e-06
  -2.9207388e-04 -9.1397684e-05  3.9466590e-04 -2.0442675e-03
  -2.3451431e-03  1.5296302e-03  3.6036740e-03 -1.8908285e-03
  -2.9544737e-03  2.9688796e-03  4.0026626e-04 -1.3758009e-03
   2.5131714e-03 -2.0040853e-03 -2.6214693e-04  1.1852352e-03
   4.8373509e-03  2.0383879e-04  2.8918989e-03  1.8276627e-03
   1.8066184e-03 -1.4352469e-03 -8.9567597e-04 -1.6585212e-04
  -1.2759508e-03  3.2460161e-03  8.7355809e-05 -3.0406982e-05
  -4.9260369e-04 -8.8233524e-04 -9.6033362e-04 -1.2771680e-03
   5.0848688e-04  7.9946208e-04 -4.3930097e-05 -8.5693604e-04
   5.7231671e-05  3.9964896e-03 -3.4840038e-04 -2.4563840e-04
  -1.2383851e-03  2.5187898e-04 -1.4556643e-03  8.0300146e-04
   8.7260461e-04 -3.7705237e-03 -1.6676611e-04 -8.5003514e-05
   3.8802988e-04 -1.0413895e-03  3.2610237e-03  8.2029984e-04
  -2.5317625e-03  2.9502739e-03  2.5283487e-03 -6.2756013e-04
  -1.3397745e-04  2.1540313e-03  1.3146071e-03  4.8091803e-03
  -1.3393254e-03  1.4644704e-04  2.4677929e-03  7.8216493e-07
   1.5113153e-05  1.2555042e-04 -1.4540972e-04 -5.3928798e-04
   3.5365629e-03 -8.3208119e-04 -8.0154219e-04  2.6310943e-05
   2.1220173e-04  2.0721429e-03  4.8096078e-03  3.2412109e-03
   2.2343721e-03  1.2657263e-03  1.0212656e-03 -2.2337919e-03
   2.5083928e-03 -9.0389340e-06 -1.7807685e-03  5.8993761e-04
  -1.2250998e-05 -8.5323356e-04 -2.1024502e-03  9.0994313e-04
   1.9092846e-03 -3.1042792e-04  5.3971214e-03  8.7288453e-04
   2.5811803e-03 -1.1200345e-03  3.7443175e-03 -2.9956179e-03
   4.0307203e-03 -1.1125518e-03 -5.4673717e-04 -4.7517638e-05
  -6.8724749e-04 -1.8124997e-03  5.1351654e-04 -1.1841567e-03
  -1.2070135e-03  4.3265740e-03 -6.8042194e-04  4.2584125e-04]
 [-2.0716644e-03 -3.1249187e-04  3.9275470e-03 -1.5760920e-03
   1.6780517e-03 -3.4461175e-03  2.5265825e-03 -1.0672063e-03
   4.0031904e-03 -1.0308591e-03  3.7549750e-04  3.1278137e-04
   1.5559015e-06 -8.3525910e-04  1.1605183e-03  7.4588216e-04
   3.3852728e-03  3.1510936e-05 -5.1043357e-04 -5.4528105e-06
  -2.9207388e-04 -9.1397684e-05  3.9466590e-04 -2.0442675e-03
  -2.3451431e-03  1.5296302e-03  3.6036740e-03 -1.8908285e-03
  -2.9544737e-03  2.9688796e-03  4.0026626e-04 -1.3758009e-03
   2.5131714e-03 -2.0040853e-03 -2.6214693e-04  1.1852352e-03
   4.8373509e-03  2.0383879e-04  2.8918989e-03  1.8276627e-03
   1.8066184e-03 -1.4352469e-03 -8.9567597e-04 -1.6585212e-04
  -1.2759508e-03  3.2460161e-03  8.7355809e-05 -3.0406982e-05
  -4.9260369e-04 -8.8233524e-04 -9.6033362e-04 -1.2771680e-03
   5.0848688e-04  7.9946208e-04 -4.3930097e-05 -8.5693604e-04
   5.7231671e-05  3.9964896e-03 -3.4840038e-04 -2.4563840e-04
  -1.2383851e-03  2.5187898e-04 -1.4556643e-03  8.0300146e-04
   8.7260461e-04 -3.7705237e-03 -1.6676611e-04 -8.5003514e-05
   3.8802988e-04 -1.0413895e-03  3.2610237e-03  8.2029984e-04
  -2.5317625e-03  2.9502739e-03  2.5283487e-03 -6.2756013e-04
  -1.3397745e-04  2.1540313e-03  1.3146071e-03  4.8091803e-03
  -1.3393254e-03  1.4644704e-04  2.4677929e-03  7.8216493e-07
   1.5113153e-05  1.2555042e-04 -1.4540972e-04 -5.3928798e-04
   3.5365629e-03 -8.3208119e-04 -8.0154219e-04  2.6310943e-05
   2.1220173e-04  2.0721429e-03  4.8096078e-03  3.2412109e-03
   2.2343721e-03  1.2657263e-03  1.0212656e-03 -2.2337919e-03
   2.5083928e-03 -9.0389340e-06 -1.7807685e-03  5.8993761e-04
  -1.2250998e-05 -8.5323356e-04 -2.1024502e-03  9.0994313e-04
   1.9092846e-03 -3.1042792e-04  5.3971214e-03  8.7288453e-04
   2.5811803e-03 -1.1200345e-03  3.7443175e-03 -2.9956179e-03
   4.0307203e-03 -1.1125518e-03 -5.4673717e-04 -4.7517638e-05
  -6.8724749e-04 -1.8124997e-03  5.1351654e-04 -1.1841567e-03
  -1.2070135e-03  4.3265740e-03 -6.8042194e-04  4.2584125e-04]]
      h_idx     t_idx h_type rel_type t_type layer  weight
0 -0.002072 -0.002072   Gene  rev_ABC    SNP    l1     NaN
1 -0.000312 -0.000312   Gene  rev_ABC    SNP    l1     NaN
2  0.003928  0.003928   Gene  rev_ABC    SNP    l1     NaN
3 -0.001576 -0.001576   Gene  rev_ABC    SNP    l1     NaN
4  0.001678  0.001678   Gene  rev_ABC    SNP    l1     NaN
Start generating disease critical network...
      h_idx     t_idx h_type rel_type t_type layer  weight
0 -0.002072 -0.002072   Gene  rev_ABC    SNP    l1     NaN
1 -0.000312 -0.000312   Gene  rev_ABC    SNP    l1     NaN
2  0.003928  0.003928   Gene  rev_ABC    SNP    l1     NaN
3 -0.001576 -0.001576   Gene  rev_ABC    SNP    l1     NaN
4  0.001678  0.001678   Gene  rev_ABC    SNP    l1     NaN
No filters... Using all genes and gene programs...
generate_viz: snp2genes
      h_idx     t_idx h_type rel_type t_type layer  weight
0 -0.002072 -0.002072   Gene  rev_ABC    SNP    l1     NaN
1 -0.000312 -0.000312   Gene  rev_ABC    SNP    l1     NaN
2  0.003928  0.003928   Gene  rev_ABC    SNP    l1     NaN
3 -0.001576 -0.001576   Gene  rev_ABC    SNP    l1     NaN
4  0.001678  0.001678   Gene  rev_ABC    SNP    l1     NaN
generate_viz: snp2genes_hit
Empty DataFrame
Columns: [h_idx, t_idx, h_type, rel_type, t_type, layer, weight]
Index: []
generate_viz: snp2genes_hit with z_rel
Empty DataFrame
Columns: [h_idx, t_idx, h_type, rel_type, t_type, layer, weight, rel_type_std, rel_type_mean, z_rel]
Index: []
Empty DataFrame
Columns: [h_idx, t_idx, h_type, rel_type, t_type, layer, weight, rel_type_std, rel_type_mean, importance]
Index: []

@jhchung
Copy link

jhchung commented Feb 19, 2025

Unfortunately, I won't be able to do too much more. Things are getting a bit over my head with the ML portions.

jhchung added a commit to jhchung/KGWAS that referenced this issue Feb 19, 2025
jhchung added a commit to jhchung/KGWAS that referenced this issue Feb 19, 2025
@Himanshu-at-bayer
Copy link

@jhchung Did you manage to reproduce the results?
@kexinhuang12345 Would you be kind to share your thoughts on this and is there any codes for generating knowledge graph from scratch for the datasets you used?

@kexinhuang12345
Copy link
Collaborator

Thanks for trying it out! @jhchung
Sorry for being late in response - i was stranded with a few deadlines.
I will take a deep look into this by end of next week!
I can also share the notebook for generating the knowledge graph, and extension to larger variant set but it is a bit messy so needs lots of clean up.

@kexinhuang12345
Copy link
Collaborator

Hi - i re-run the code and there is no bug reported.
Could you share the environment versions? Especially the pytorch geometric related packages?

@Himanshu-at-bayer
Copy link

I actually used the .yml file what is provided and the python version 3.12.9

aiohappyeyeballs @ file:///home/conda/feedstock_root/build_artifacts/aiohappyeyeballs_1741285157081/work aiohttp @ file:///home/conda/feedstock_root/build_artifacts/aiohttp_1740481426959/work aiosignal @ file:///home/conda/feedstock_root/build_artifacts/aiosignal_1734342155601/work asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1733250440834/work attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1737819173731/work Brotli @ file:///home/conda/feedstock_root/build_artifacts/brotli-split_1725267488082/work certifi @ file:///home/conda/feedstock_root/build_artifacts/certifi_1739515848642/work/certifi cffi @ file:///home/conda/feedstock_root/build_artifacts/cffi_1725560558132/work charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1735929714516/work colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1733218098505/work comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1733502965406/work debugpy @ file:///home/conda/feedstock_root/build_artifacts/debugpy_1741148399929/work decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1740384970518/work exceptiongroup @ file:///home/conda/feedstock_root/build_artifacts/exceptiongroup_1733208806608/work executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1733569351617/work filelock @ file:///home/conda/feedstock_root/build_artifacts/filelock_1737517818712/work frozenlist @ file:///home/conda/feedstock_root/build_artifacts/frozenlist_1737645236190/work fsspec @ file:///home/conda/feedstock_root/build_artifacts/fsspec_1741403990995/work gmpy2 @ file:///home/conda/feedstock_root/build_artifacts/gmpy2_1733462543063/work h2 @ file:///home/conda/feedstock_root/build_artifacts/h2_1738578511449/work hpack @ file:///home/conda/feedstock_root/build_artifacts/hpack_1737618293087/work hyperframe @ file:///home/conda/feedstock_root/build_artifacts/hyperframe_1737618333194/work idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1733211830134/work importlib_metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1737420181517/work ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1719845459717/work ipython @ file:///home/conda/feedstock_root/build_artifacts/bld/rattler-build_ipython_1741457126/work ipython_pygments_lexers @ file:///home/conda/feedstock_root/build_artifacts/ipython_pygments_lexers_1737123620466/work jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1733300866624/work Jinja2 @ file:///home/conda/feedstock_root/build_artifacts/jinja2_1741263328855/work joblib==1.4.2 jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1733440914442/work jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1727163409502/work KGWAS==0.0.4 MarkupSafe @ file:///home/conda/feedstock_root/build_artifacts/markupsafe_1733219680183/work matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1733416936468/work mpmath @ file:///home/conda/feedstock_root/build_artifacts/mpmath_1733302684489/work multidict @ file:///home/conda/feedstock_root/build_artifacts/multidict_1733913043842/work nest_asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1733325553580/work networkx @ file:///home/conda/feedstock_root/build_artifacts/bld/rattler-build_networkx_1731521053/work numpy @ file:///home/conda/feedstock_root/build_artifacts/numpy_1739425576395/work/dist/numpy-2.2.3-cp312-cp312-linux_x86_64.whl#sha256=68b15abc87423b478db525b2a06a381bcad198019c77d25b34aaed84536beee2 packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1733203243479/work pandas==2.2.3 parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1733271261340/work pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1733301927746/work pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1733327343728/work pillow @ file:///home/conda/feedstock_root/build_artifacts/pillow_1735929693903/work platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1733232627818/work prompt_toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1737453357274/work propcache @ file:///home/conda/feedstock_root/build_artifacts/propcache_1737635528546/work psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1740663123172/work ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1733302279685/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl#sha256=92c32ff62b5fd8cf325bec5ab90d7be3d2a8ca8c8a3813ff487a8d2002630d1f pure_eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1733569405015/work pycparser @ file:///home/conda/feedstock_root/build_artifacts/bld/rattler-build_pycparser_1733195786/work Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1736243443484/work pyparsing @ file:///home/conda/feedstock_root/build_artifacts/pyparsing_1735698276679/work PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1733217236728/work python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1733215673016/work pytz==2025.1 PyYAML @ file:///home/conda/feedstock_root/build_artifacts/pyyaml_1737454647378/work pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1738270962252/work requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1733217035951/work scikit-learn==1.6.1 scipy @ file:///home/conda/feedstock_root/build_artifacts/scipy-split_1739790643552/work/dist/scipy-1.15.2-cp312-cp312-linux_x86_64.whl#sha256=9c4c390e67a1320f6f3b418568855f0a6759c34ce8e5b9eb6cc90d02fd7ba711 setuptools==75.8.2 six @ file:///home/conda/feedstock_root/build_artifacts/six_1733380938961/work stack_data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1733569443808/work sympy @ file:///home/conda/feedstock_root/build_artifacts/sympy_1736248176451/work threadpoolctl==3.5.0 torch==2.4.1 torch-geometric @ file:///usr/share/miniconda/envs/test/conda-bld/pyg_1728444972652/work torch_scatter @ file:///usr/share/miniconda/envs/test/conda-bld/pytorch-scatter_1723705746180/work torch_sparse @ file:///usr/share/miniconda/envs/test/conda-bld/pytorch-sparse_1723729522954/work torchaudio==2.4.1 torchvision==0.19.1 tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1732615905931/work tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1735661334605/work traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1733367359838/work triton==3.0.0 typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1733188668063/work tzdata==2025.1 urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1734859416348/work wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1733231326287/work wheel==0.45.1 yarl @ file:///home/conda/feedstock_root/build_artifacts/yarl_1737575777699/work zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1732827521216/work zstandard @ file:///work/perseverance-python-buildout/croot/zstandard_1698847073368/work

@Himanshu-at-bayer
Copy link

@kexinhuang12345 Also as you mentioned earlier that you could share the notebook for generating the KG :) Would be nice to have it and please don't need to polish the notebook ;)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants