forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
executable file
·211 lines (164 loc) · 7.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Pre-process Data / features files and build vocabulary
"""
import argparse
import os
import glob
import sys
import torch
from onmt.utils.logging import init_logger, logger
import onmt.inputters as inputters
import onmt.opts as opts
def check_existing_pt_files(opt):
""" Checking if there are existing .pt files to avoid tampering """
# We will use glob.glob() to find sharded {train|valid}.[0-9]*.pt
# when training, so check to avoid tampering with existing pt files
# or mixing them up.
for t in ['train', 'valid', 'vocab']:
pattern = opt.save_data + '.' + t + '*.pt'
if glob.glob(pattern):
sys.stderr.write("Please backup existing pt file: %s, "
"to avoid tampering!\n" % pattern)
sys.exit(1)
def parse_args():
""" Parsing arguments """
parser = argparse.ArgumentParser(
description='preprocess.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.preprocess_opts(parser)
opt = parser.parse_args()
torch.manual_seed(opt.seed)
check_existing_pt_files(opt)
return opt
def build_save_in_shards(src_corpus, tgt_corpus, fields,
corpus_type, opt):
"""
Divide the big corpus into shards, and build dataset separately.
This is currently only for data_type=='text'.
The reason we do this is to avoid taking up too much memory due
to sucking in a huge corpus file.
To tackle this, we only read in part of the corpus file of size
`max_shard_size`(actually it is multiples of 64 bytes that equals
or is slightly larger than this size), and process it into dataset,
then write it to disk along the way. By doing this, we only focus on
part of the corpus at any moment, thus effectively reducing memory use.
According to test, this method can reduce memory footprint by ~50%.
Note! As we process along the shards, previous shards might still
stay in memory, but since we are done with them, and no more
reference to them, if there is memory tight situation, the OS could
easily reclaim these memory.
If `max_shard_size` is 0 or is larger than the corpus size, it is
effectively preprocessed into one dataset, i.e. no sharding.
NOTE! `max_shard_size` is measuring the input corpus size, not the
output pt file size. So a shard pt file consists of examples of size
2 * `max_shard_size`(source + target).
"""
corpus_size = os.path.getsize(src_corpus)
if corpus_size > 10 * (1024 ** 2) and opt.max_shard_size == 0:
logger.info("Warning. The corpus %s is larger than 10M bytes, "
"you can set '-max_shard_size' to process it by "
"small shards to use less memory." % src_corpus)
if opt.max_shard_size != 0:
logger.info(' * divide corpus into shards and build dataset '
'separately (shard_size = %d bytes).'
% opt.max_shard_size)
ret_list = []
src_iter = inputters.ShardedTextCorpusIterator(
src_corpus, opt.src_seq_length_trunc,
"src", opt.max_shard_size)
tgt_iter = inputters.ShardedTextCorpusIterator(
tgt_corpus, opt.tgt_seq_length_trunc,
"tgt", opt.max_shard_size,
assoc_iter=src_iter)
index = 0
while not src_iter.hit_end():
index += 1
dataset = inputters.TextDataset(
fields, src_iter, tgt_iter,
src_iter.num_feats, tgt_iter.num_feats,
src_seq_length=opt.src_seq_length,
tgt_seq_length=opt.tgt_seq_length,
dynamic_dict=opt.dynamic_dict)
# We save fields in vocab.pt separately, so make it empty.
dataset.fields = []
pt_file = "{:s}.{:s}.{:d}.pt".format(
opt.save_data, corpus_type, index)
logger.info(" * saving %s data shard to %s."
% (corpus_type, pt_file))
torch.save(dataset, pt_file)
ret_list.append(pt_file)
return ret_list
def build_save_dataset(corpus_type, fields, opt):
""" Building and saving the dataset """
assert corpus_type in ['train', 'valid']
if corpus_type == 'train':
src_corpus = opt.train_src
tgt_corpus = opt.train_tgt
else:
src_corpus = opt.valid_src
tgt_corpus = opt.valid_tgt
# Currently we only do preprocess sharding for corpus: data_type=='text'.
if opt.data_type == 'text':
return build_save_in_shards(
src_corpus, tgt_corpus, fields,
corpus_type, opt)
# For data_type == 'img' or 'audio', currently we don't do
# preprocess sharding. We only build a monolithic dataset.
# But since the interfaces are uniform, it would be not hard
# to do this should users need this feature.
dataset = inputters.build_dataset(
fields, opt.data_type,
src_path=src_corpus,
tgt_path=tgt_corpus,
src_dir=opt.src_dir,
src_seq_length=opt.src_seq_length,
tgt_seq_length=opt.tgt_seq_length,
src_seq_length_trunc=opt.src_seq_length_trunc,
tgt_seq_length_trunc=opt.tgt_seq_length_trunc,
dynamic_dict=opt.dynamic_dict,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window)
# We save fields in vocab.pt seperately, so make it empty.
dataset.fields = []
pt_file = "{:s}.{:s}.pt".format(opt.save_data, corpus_type)
logger.info(" * saving %s dataset to %s." % (corpus_type, pt_file))
torch.save(dataset, pt_file)
return [pt_file]
def build_save_vocab(train_dataset, fields, opt):
""" Building and saving the vocab """
fields = inputters.build_vocab(train_dataset, fields, opt.data_type,
opt.share_vocab,
opt.src_vocab,
opt.src_vocab_size,
opt.src_words_min_frequency,
opt.tgt_vocab,
opt.tgt_vocab_size,
opt.tgt_words_min_frequency)
# Can't save fields, so remove/reconstruct at training time.
vocab_file = opt.save_data + '.vocab.pt'
torch.save(inputters.save_fields_to_vocab(fields), vocab_file)
def main():
opt = parse_args()
init_logger(opt.log_file)
logger.info("Extracting features...")
src_nfeats = inputters.get_num_features(
opt.data_type, opt.train_src, 'src')
tgt_nfeats = inputters.get_num_features(
opt.data_type, opt.train_tgt, 'tgt')
logger.info(" * number of source features: %d." % src_nfeats)
logger.info(" * number of target features: %d." % tgt_nfeats)
logger.info("Building `Fields` object...")
fields = inputters.get_fields(opt.data_type, src_nfeats, tgt_nfeats)
logger.info("Building & saving training data...")
train_dataset_files = build_save_dataset('train', fields, opt)
logger.info("Building & saving vocabulary...")
build_save_vocab(train_dataset_files, fields, opt)
logger.info("Building & saving validation data...")
build_save_dataset('valid', fields, opt)
if __name__ == "__main__":
main()