-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPiano2Midi.py
99 lines (74 loc) · 3.29 KB
/
Piano2Midi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import tensorflow as tf
import os
from magenta.protobuf import music_pb2
from magenta.music import sequences_lib, midi_io
from magenta.models.onsets_frames_transcription import configs, data, train_util, audio_label_data_utils, constants
# Trained Model Directory
MODEL_DIR = './train'
# Hyperparamter
config = configs.CONFIG_MAP['onsets_frames']
hparams = config.hparams
hparams.batch_size = 1
hparams.use_cudnn = False
hparams.audio_transform = False
example = tf.placeholder(tf.string, [None])
# Logging
tf.logging.info('model_dir=%s', MODEL_DIR)
tf.logging.info('checkpoint_path=%s', 'checkpoint')
# 배치 생성
dataset = data.provide_batch(examples=example, preprocess_examples=True,
params=hparams, is_training=False, shuffle_examples=False,
skip_n_initial_records=0)
# Estimator
estimator = train_util.create_estimator(config.model_fn, MODEL_DIR, hparams)
# 배치를 순환하는 이터레이터
iterator =dataset.make_initializable_iterator()
next_record = iterator.get_next()
sess = tf.Session()
#전역변수 및 로컬변수 초기화
sess.run([tf.initializers.global_variables(), tf.initializers.local_variables()])
#tensor로부터 사용하려는 데이터를 불러와 Dataset 인스턴스 생성
def input_fn(params):
del params
return tf.data.Dataset.from_tensors(sess.run(next_record))
def infer(filename):
# WAV 파일 Binary로 읽기
wav = open(filename,'rb')
wav_data = wav.read()
wav.close()
tf.logging.info('User .WAV FIle %s length %s bytes', filename, len(wav_data))
## 전처리
# 청크로 분할 후, Protocol Buffers 로 변환
to_process = []
examples = list(audio_label_data_utils.process_record(wav_data=wav_data, ns=music_pb2.NoteSequence(),
example_id=filename, min_length=0, max_length=-1, allow_empty_notesequence=True))
# 분할된 버퍼를 시리얼라이즈
to_process.append(examples[0].SerializeToString())
#############################################################
#시리얼라이즈한 버퍼를 iterator에 주입
sess.run(iterator.initializer, {example:to_process})
# Inference
predictions = list(estimator.predict(input_fn, yield_single_examples=False))
#가정 설정문으로 prediction size를 1로 보장
assert len(predictions) == 1
#예측 결과 불러오기
frame_predictions = predictions[0]['frame_predictions'][0]
onset_predictions = predictions[0]['onset_predictions'][0] # 치는 순간
velocity_values = predictions[0]['velocity_values'][0] #강약
#MIDI로 인코딩
sequence_prediction = sequences_lib.pianoroll_to_note_sequence(
frame_predictions,
frames_per_second=data.hparams_frames_per_second(hparams),
min_duration_ms=0,
min_midi_pitch=constants.MIN_MIDI_PITCH,
onset_predictions=onset_predictions,
velocity_values=velocity_values)
basename = os.path.split(os.path.splitext(filename)[0])[1] + '.mid'
output_filename = os.path.join('', basename)
midi_filename = (output_filename)
midi_io.sequence_proto_to_midi_file(sequence_prediction, midi_filename)
print('Program Ended, Your MIDI File is in', output_filename)
sess.close()
if __name__ == '__main__':
file = input('Input Your .WAV Filename:')
infer(file)