forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_unary_ufuncs.py
1577 lines (1346 loc) · 71.7 KB
/
test_unary_ufuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import numpy as np
import warnings
import math
from itertools import product, chain
from numbers import Number
import random
import unittest
from torch._six import inf, nan
from torch.testing._internal.common_utils import (
TestCase, run_tests, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict,
suppress_warnings, make_tensor, TEST_SCIPY, slowTest, skipIfNoSciPy, IS_WINDOWS)
from torch.testing._internal.common_methods_invocations import (
unary_ufuncs, _NOTHING)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, ops, dtypes, onlyCPU, onlyOnCPUAndCUDA,
onlyCUDA, dtypesIfCUDA, precisionOverride, skipCUDAIfRocm, dtypesIfCPU,
OpDTypes)
from torch.testing import (
floating_types_and, all_types_and_complex_and, floating_and_complex_types_and)
if TEST_SCIPY:
import scipy
# Refer [scipy reference filter]
# Filter operators for which the reference function
# is available in the current environment (for reference_numerics tests).
reference_filtered_ops = list(filter(lambda op: op.ref is not _NOTHING, unary_ufuncs))
# Tests for unary "universal functions (ufuncs)" that accept a single
# tensor and have common properties like:
# - they are elementwise functions
# - the input shape is the output shape
# - they typically have method and inplace variants
# - they typically support the out kwarg
# - they typically have NumPy or SciPy references
# See NumPy's universal function documentation
# (https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
# about the concept of ufuncs.
# Functions tested here:
#
# Interesting values and extremal values for different dtypes
_unsigned_int_vals = (0, 1, 55, 127)
_int_vals = (0, -1, 1, -55, 55, -127, 127, -128, 128)
_large_int_vals = (-1113, 1113, -10701, 10701)
_float_vals = (0.,
-.001, .001,
-.25, .25,
-1., 1.,
-math.pi / 2, math.pi / 2,
-math.pi + .00001, math.pi - .00001,
-math.pi, math.pi,
-math.pi - .00001, math.pi + .00001)
_large_float16_vals = (-501, 501,
-1001.2, 1001.2,
-13437.7, 13437.7)
_large_float_vals = _large_float16_vals + (-4988429.2, 4988429.2, -1e20, 1e20)
_float_extremals = (float('inf'), float('-inf'), float('nan'))
_medium_length = 812
_large_size = (1029, 917)
# Returns generator of tensors of different sizes filled with values in domain
# and with intested region filled with `vals`. This will help test different code
# paths for the given vals
def generate_tensors_from_vals(vals, device, dtype, domain):
offset = 63
assert _large_size[1] > (_medium_length + offset) # large tensor should be large enough
assert len(vals) < _medium_length # medium tensor should contain all vals
assert _medium_length % 4 == 0 # ensure vectorized code coverage
if not dtype.is_complex:
# Filter values based on Operators domain.
# Note: Complex numbers don't belong to ordered field,
# so we don't filter for them.
if domain[0] is not None:
vals = list(filter(lambda x: x >= domain[0], vals))
if domain[1] is not None:
vals = list(filter(lambda x: x < domain[1], vals))
# Constructs the large tensor containing vals
large_tensor = make_tensor(_large_size, device=device, dtype=dtype, low=domain[0], high=domain[1])
# Inserts the vals at an odd place
large_tensor[57][offset:offset + len(vals)] = torch.tensor(vals, device=device, dtype=dtype)
# Takes a medium sized copy of the large tensor containing vals
medium_tensor = large_tensor[57][offset:offset + _medium_length]
# Constructs scalar tensors
scalar_tensors = (t.squeeze() for t in torch.split(medium_tensor, 1))
# Tensors with no elements
empty_sizes = ((0,), (0, 3, 3), (1, 0, 5), (6, 0, 0, 0), (3, 0, 1, 0))
empty_tensors = (torch.empty(size, device=device, dtype=dtype) for size in empty_sizes)
return chain(empty_tensors, scalar_tensors, (medium_tensor,), (large_tensor,))
# [Note generate_numeric_tensors, generate_numeric_tensors_hard,
# and generate_numeric_tensors_extremal]
#
# Returns an iterable of contiguous tensors with the same storage on the requested
# device and with the requested dtype.
#
# This function is intended to test the non-vectorized and vectorized code
# paths of unary functions, as well as their handling of odd tensor
# sizes (like zero-dim tensors and tensors with zero elements).
#
# The iterable will include an empty tensor, tensors with no elements,
# zero dim (scalar) tensors, small 1D tensors, a medium 1D tensor, and
# a large 2D tensor.
#
# These tensors will include interesting values. The generate_numeric_tensors_hard
# tests larger values (>500) and generate_numeric_tensors_extremal tests extremal
# values like -inf, inf, and nan.
#
# The randomly generated values can be restricted by the domain
# argument.
def generate_numeric_tensors(device, dtype, *,
domain=(None, None)):
# Special-cases bool
if dtype is torch.bool:
tensors = (torch.empty(0, device=device, dtype=torch.bool),
torch.tensor(True, device=device),
torch.tensor(False, device=device),
torch.tensor((True, False), device=device),
make_tensor((_medium_length,), device=device, dtype=dtype, low=None, high=None),
make_tensor(_large_size, device=device, dtype=dtype, low=None, high=None))
return tensors
# Acquires dtype-specific vals
if dtype.is_floating_point or dtype.is_complex:
vals = _float_vals
# Converts float -> complex vals if dtype is complex
if dtype.is_complex:
vals = tuple(complex(x, y) for x, y in product(vals, vals))
elif dtype is torch.uint8:
vals = _unsigned_int_vals
else: # dtypes is a signed integer type
assert dtype in (torch.int8, torch.int16, torch.int32, torch.int64)
vals = _int_vals
return generate_tensors_from_vals(vals, device, dtype, domain)
def generate_numeric_tensors_hard(device, dtype, *,
domain=(None, None)):
is_signed_integral = dtype in (torch.int8, torch.int16, torch.int32, torch.int64)
if not (dtype.is_floating_point or dtype.is_complex or is_signed_integral):
return ()
if dtype.is_floating_point:
if dtype is torch.float16:
# float16 has smaller range.
vals = _large_float16_vals
else:
vals = _large_float_vals
elif dtype.is_complex:
vals = tuple(complex(x, y) for x, y in chain(product(_large_float_vals, _large_float_vals),
product(_float_vals, _large_float_vals),
product(_large_float_vals, _float_vals)))
else:
vals = _large_int_vals
return generate_tensors_from_vals(vals, device, dtype, domain)
def generate_numeric_tensors_extremal(device, dtype, *,
domain=(None, None)):
if not (dtype.is_floating_point or dtype.is_complex):
return ()
vals = []
if dtype.is_floating_point:
vals = _float_extremals
elif dtype.is_complex:
vals = tuple(complex(x, y) for x, y in chain(product(_float_extremals, _float_extremals),
product(_float_vals, _float_extremals),
product(_float_extremals, _float_vals)))
return generate_tensors_from_vals(vals, device, dtype, domain)
# TODO: port test_unary_out_op_mem_overlap
# TODO: add out= tests (different devices, dtypes, mismatched sizes,
# correct sizes, 0 size, broadcasted out)
# TODO: add test for inplace variants erroring on broadcasted inputs
class TestUnaryUfuncs(TestCase):
exact_dtype = True
# Tests bool tensor negation raises the correct error
def test_neg_error_message(self, device):
msg = ("Negation, the `\\-` operator, on a bool tensor is not supported."
" If you are trying to invert a mask, use the `\\~` or"
" `logical_not\\(\\)` operator instead.")
t = torch.tensor((False, True), device=device)
with self.assertRaisesRegex(RuntimeError, msg):
torch.neg(t)
@dtypes(*floating_types_and(torch.bfloat16, torch.half))
@ops((_fn for _fn in unary_ufuncs if _fn.domain != (None, None)))
def test_float_domains(self, device, dtype, op):
if not op.supports_dtype(dtype, torch.device(device).type):
raise unittest.SkipTest('unsupported dtype')
eps = (1e-5, 1e-3, 1e-1, 1, 2, 10, 20, 50, 100)
low, high = op.domain
# NOTE: the following two loops are separated for readability
if low is not None:
low_tensor = torch.tensor(low, device=device, dtype=dtype)
for epsilon in eps:
lower_tensor = low_tensor - epsilon
# Skips the test if the difference is not representable,
# which can occur if, for example, the difference is small
# and the dtype is imprecise (like bfloat16 is)
if lower_tensor.item() == low_tensor.item():
continue
result = op(lower_tensor)
self.assertEqual(result.item(), float('nan'),
msg=("input of {0} outside lower domain boundary"
" {1} produced {2}, not nan!").format(lower_tensor.item(),
low,
result.item()))
if high is not None:
high_tensor = torch.tensor(high, device=device, dtype=dtype)
for epsilon in eps:
higher_tensor = high_tensor + epsilon
# See above comment
if higher_tensor.item() == high_tensor.item():
continue
result = op(higher_tensor)
self.assertEqual(result.item(), float('nan'),
msg=("input of {0} outside upper domain boundary"
" {1} produced {2}, not nan!").format(higher_tensor.item(),
high,
result.item()))
# Helper for comparing torch tensors and numpy arrays
# TODO: should this or assertEqual also validate that strides are equal?
def assertEqualHelper(self, actual, expected, msg, *, dtype, exact_dtype=True, **kwargs):
assert isinstance(actual, torch.Tensor)
# Some NumPy functions return scalars, not arrays
if isinstance(expected, Number):
self.assertEqual(actual.item(), expected, **kwargs)
elif isinstance(expected, np.ndarray):
# Handles exact dtype comparisons between arrays and tensors
if exact_dtype:
# Allows array dtype to be float32 when comparing with bfloat16 tensors
# since NumPy doesn't support the bfloat16 dtype
# Also ops like scipy.special.erf, scipy.special.erfc, etc, promote float16
# to float32
if expected.dtype == np.float32:
assert actual.dtype in (torch.float16, torch.bfloat16, torch.float32)
else:
assert expected.dtype == torch_to_numpy_dtype_dict[actual.dtype]
self.assertEqual(actual,
torch.from_numpy(expected).to(actual.dtype),
msg,
exact_device=False,
**kwargs)
else:
self.assertEqual(actual, expected, msg, exact_device=False, **kwargs)
# Tests that the function and its (array-accepting) reference produce the same
# values on given tensors
def _test_reference_numerics(self, dtype, op, tensors, equal_nan=True):
def _helper_reference_numerics(expected, actual, msg, exact_dtype, equal_nan=True):
if not torch.can_cast(numpy_to_torch_dtype_dict[expected.dtype.type], dtype):
exact_dtype = False
if dtype in [torch.uint8, torch.int8, torch.bool]:
# NOTE: For these dtypes, PyTorch computes in the default scalar type (float)
# while NumPy computes in float16
self.assertEqualHelper(actual, expected, msg, dtype=dtype,
exact_dtype=exact_dtype, rtol=1e-3, atol=1e-2)
elif dtype is torch.bfloat16:
# Ref: https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_utils.py#L1149
self.assertEqualHelper(actual, expected, msg, dtype=dtype,
exact_dtype=exact_dtype, rtol=16e-3, atol=1e-5)
else:
self.assertEqualHelper(actual, expected, msg, dtype=dtype, equal_nan=equal_nan, exact_dtype=exact_dtype)
for t in tensors:
torch_kwargs, numpy_kwargs = op.sample_kwargs(t.device, dtype, t)
if dtype is torch.bfloat16:
a = t.cpu().to(torch.float32).numpy()
else:
a = t.cpu().numpy()
actual = op(t, **torch_kwargs)
expected = op.ref(a, **numpy_kwargs)
# Crafts a custom error message for smaller, printable tensors
if t.numel() < 10:
msg = ("Failed to produce expected results! Input tensor was"
" {0}, torch result is {1}, and reference result is"
" {2}.").format(t, actual, expected)
else:
msg = None
exact_dtype = True
if isinstance(actual, torch.Tensor):
_helper_reference_numerics(expected, actual, msg, exact_dtype, equal_nan)
else:
for x, y in zip(expected, actual):
# testing multi-outputs results
_helper_reference_numerics(x, y, msg, exact_dtype, equal_nan)
# Tests that the function and its (array-accepting) reference produce the same
# values on a range of tensors, including empty tensors, scalar tensors,
# 1D tensors and a large 2D tensor with interesting and extremal values
# and noncontiguities.
@suppress_warnings
@ops(reference_filtered_ops)
def test_reference_numerics_normal(self, device, dtype, op):
tensors = generate_numeric_tensors(device, dtype,
domain=op.domain)
self._test_reference_numerics(dtype, op, tensors)
@suppress_warnings
@ops(reference_filtered_ops, allowed_dtypes=floating_and_complex_types_and(
torch.bfloat16, torch.half, torch.int8, torch.int16, torch.int32, torch.int64
))
def test_reference_numerics_hard(self, device, dtype, op):
if not op.handles_large_floats:
raise self.skipTest("This op does not handle large values")
tensors = generate_numeric_tensors_hard(device, dtype,
domain=op.domain)
self._test_reference_numerics(dtype, op, tensors)
@suppress_warnings
@ops(reference_filtered_ops,
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half))
def test_reference_numerics_extremal(self, device, dtype, op):
handles_extremals = (op.handles_complex_extremals if
dtype in (torch.cfloat, torch.cdouble) else op.handles_extremals)
if not handles_extremals:
raise self.skipTest("This op does not handle extremal values")
tensors = generate_numeric_tensors_extremal(device, dtype,
domain=op.domain)
# https://github.com/pytorch/pytorch/issues/50749
equal_nan = "relaxed" if device.startswith('cuda') else True
self._test_reference_numerics(dtype, op, tensors, equal_nan)
# Tests for testing (non)contiguity consistency
@ops(unary_ufuncs)
def test_contig_vs_every_other(self, device, dtype, op):
contig = make_tensor((1026,), device=device, dtype=dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig[::2]
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, non_contig)
self.assertEqual(op(contig, **torch_kwargs)[::2], op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_contig_vs_transposed(self, device, dtype, op):
contig = make_tensor((789, 357), device=device, dtype=dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig.T
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs).T, op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_non_contig(self, device, dtype, op):
shapes = [(5, 7), (1024,)]
for shape in shapes:
contig = make_tensor(shape, device, dtype,
low=op.domain[0], high=op.domain[1])
non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
non_contig.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_non_contig_index(self, device, dtype, op):
contig = make_tensor((2, 2, 1, 2), device, dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig[:, 1, ...]
contig = non_contig.contiguous()
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
@ops(unary_ufuncs)
def test_non_contig_expand(self, device, dtype, op):
shapes = [(1, 3), (1, 7), (5, 7)]
for shape in shapes:
contig = make_tensor(shape, device, dtype,
low=op.domain[0], high=op.domain[1])
non_contig = contig.clone().expand(3, -1, -1)
self.assertTrue(contig.is_contiguous())
self.assertFalse(non_contig.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
contig = op(contig, **torch_kwargs)
non_contig = op(non_contig, **torch_kwargs)
for i in range(3):
self.assertEqual(contig, non_contig[i],
msg='non-contiguous expand[' + str(i) + ']')
@ops(unary_ufuncs)
def test_contig_size1(self, device, dtype, op):
contig = make_tensor((5, 100), device, dtype,
low=op.domain[0], high=op.domain[1])
contig = contig[:1, :50]
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
contig2.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertTrue(contig2.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
@ops(unary_ufuncs)
def test_contig_size1_large_dim(self, device, dtype, op):
contig = make_tensor((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), device, dtype,
low=op.domain[0], high=op.domain[1])
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
contig2.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertTrue(contig2.is_contiguous())
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
# Tests that computation on a multiple batches is the same as
# per-batch computation.
@ops(unary_ufuncs)
def test_batch_vs_slicing(self, device, dtype, op):
input = make_tensor((1024, 512), dtype=dtype, device=device,
low=op.domain[0], high=op.domain[1])
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
actual = op(input, **torch_kwargs)
expected = torch.stack([op(slice, **torch_kwargs) for slice in input])
self.assertEqual(actual, expected)
def _test_out_arg(self, op, input, output, expected, **kwargs):
if op.safe_casts_outputs:
expect_fail = not torch.can_cast(expected.dtype, output.dtype)
else:
expect_fail = output.dtype != expected.dtype
if expect_fail:
with self.assertRaises(RuntimeError):
op(input, out=output, **kwargs)
else:
res = op(input, out=output, **kwargs)
self.assertTrue(res is output)
self.assertEqual(output, expected.to(output.dtype))
@ops(unary_ufuncs, dtypes=OpDTypes.supported)
def test_out_arg_all_dtypes(self, device, dtype, op):
if not op.supports_out:
self.skipTest("Skipped! Op doesn't support out= kwarg.")
input = make_tensor((64, 64), dtype=dtype, device=device,
low=op.domain[0], high=op.domain[1])
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
expected = op(input, **torch_kwargs)
for out_dtype in all_types_and_complex_and(torch.bool, torch.half):
out = torch.empty_like(input, dtype=out_dtype)
self._test_out_arg(op, input, out, expected, **torch_kwargs)
@dtypes(*(torch.testing.get_all_int_dtypes() + [torch.bool] +
torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
def test_nan_to_num(self, device, dtype):
for contiguous in [False, True]:
x = make_tensor((64, 64), low=0., high=100., dtype=dtype, device=device)
if dtype.is_floating_point:
# Add extremal values.
extremals = [float('nan'), float('inf'), -float('inf')]
for idx, extremal in zip(torch.randint(0, 63, (3,)), extremals):
x[idx, :] = extremal
if not contiguous:
x = x.T
# With args
nan = random.random()
posinf = random.random() * 5
neginf = random.random() * 10
self.compare_with_numpy(lambda x: x.nan_to_num(nan=nan, posinf=posinf),
lambda x: np.nan_to_num(x, nan=nan, posinf=posinf),
x)
self.compare_with_numpy(lambda x: x.nan_to_num(posinf=posinf, neginf=neginf),
lambda x: np.nan_to_num(x, posinf=posinf, neginf=neginf),
x)
# Out Variant
out = torch.empty_like(x)
result = torch.nan_to_num(x)
torch.nan_to_num(x, out=out)
self.assertEqual(result, out)
result = torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
torch.nan_to_num(x, out=out, nan=nan, posinf=posinf, neginf=neginf)
self.assertEqual(result, out)
@dtypes(torch.cdouble)
def test_complex_edge_values(self, device, dtype):
# sqrt Test Reference: https://github.com/pytorch/pytorch/pull/47424
x = torch.tensor(0. - 1.0e+20j, dtype=dtype, device=device)
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
# acos test reference: https://github.com/pytorch/pytorch/issue/42952
# Skip on Windows, as CUDA acos returns conjugate value
# see https://github.com/pytorch/pytorch/issues/52299
if not (IS_WINDOWS and dtype == torch.cdouble and "cuda" in device):
self.compare_with_numpy(torch.acos, np.arccos, x)
x = torch.tensor((-1.0e+60 if dtype == torch.cdouble else -1.0e+20) - 4988429.2j, dtype=dtype, device=device)
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
@dtypes(torch.float, torch.double)
def test_digamma_special(self, device, dtype):
# Based on SciPy test for the following special values.
# Reference:
# https://github.com/scipy/scipy/blob/3a8a3a1d4657254a6611e77e9c28feafa26e6645/scipy/special/tests/test_digamma.py#L22
euler = 0.57721566490153286
dataset = [(0., -0.),
(1, -euler),
(0.5, -2 * math.log(2) - euler),
(1 / 3, -math.pi / (2 * math.sqrt(3)) - 3 * math.log(3) / 2 - euler),
(1 / 4, -math.pi / 2 - 3 * math.log(2) - euler),
(1 / 6, -math.pi * math.sqrt(3) / 2 - 2 * math.log(2) - 3 * math.log(3) / 2 - euler),
(1 / 8, -math.pi / 2 - 4 * math.log(2) -
(math.pi + math.log(2 + math.sqrt(2)) - math.log(2 - math.sqrt(2))) / math.sqrt(2) - euler)]
x = torch.tensor(dataset, device=device, dtype=dtype)
self.compare_with_numpy(torch.digamma, scipy.special.digamma, x)
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
@dtypes(torch.float, torch.double)
def test_digamma(self, device, dtype):
# Tests pole behavior
tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111,
-100.99999994, 0.000000111, -1931.99999994,
-0.000000111, 0, -0, -1, -2, -931], dtype=dtype, device=device)
self.compare_with_numpy(torch.digamma, scipy.special.digamma, tensor)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False))
def test_frexp(self, device, dtype):
input = make_tensor((50, 50), device, dtype)
mantissa, exponent = torch.frexp(input)
np_mantissa, np_exponent = np.frexp(input.cpu().numpy())
self.assertEqual(mantissa, np_mantissa)
self.assertEqual(exponent, np_exponent)
# torch.frexp returns exponent in int32 to be compatible with np.frexp
self.assertTrue(exponent.dtype == torch.int32)
self.assertTrue(torch_to_numpy_dtype_dict[exponent.dtype] == np_exponent.dtype)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False))
def test_frexp_out(self, device, dtype):
input = make_tensor((50, 50), device, dtype)
outputs = (
(torch.empty_like(input), torch.empty_like(input, dtype=torch.int)),
(torch.empty_like(input).transpose(0, 1), make_tensor((50, 50), device, torch.int, noncontiguous=True)),
)
for mantissa, exponent in outputs:
torch.frexp(input, out=(mantissa, exponent))
np_mantissa, np_exponent = np.frexp(input.cpu().numpy())
self.assertEqual(mantissa, np_mantissa)
self.assertEqual(exponent, np_exponent)
# The warning is given when output tensors have wrong shape
with warnings.catch_warnings(record=True) as w:
mantissa = torch.empty((2, 2), device=device, dtype=dtype)
exponent = torch.empty((5, 5), device=device, dtype=torch.int)
torch.frexp(input, out=(mantissa, exponent))
self.assertEqual(len(w), 2)
self.assertTrue("An output with one or more elements was resized" in str(w[0].message))
self.assertTrue("An output with one or more elements was resized" in str(w[1].message))
@skipCUDAIfRocm
def test_frexp_assert_raises(self, device):
invalid_input_dtypes = torch.testing.get_all_int_dtypes() + \
torch.testing.get_all_complex_dtypes() + \
[torch.bool]
for dtype in invalid_input_dtypes:
input = make_tensor((50, 50), device, dtype)
with self.assertRaisesRegex(RuntimeError, r"torch\.frexp\(\) only supports floating-point dtypes"):
torch.frexp(input)
for dtype in torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False):
input = make_tensor((50, 50), device, dtype)
dtypes = list(torch.testing.all_types_and_complex_and(torch.bool,
torch.half,
torch.bfloat16))
dtypes.remove(dtype)
for mantissa_dtype in dtypes:
mantissa = torch.empty_like(input, dtype=mantissa_dtype)
exponent = torch.empty_like(input, dtype=torch.int)
with self.assertRaisesRegex(RuntimeError,
r"torch\.frexp\(\) expects mantissa to have dtype .+ but got .+"):
torch.frexp(input, out=(mantissa, exponent))
dtypes.append(dtype)
dtypes.remove(torch.int)
for exponent_dtype in dtypes:
mantissa = torch.empty_like(input)
exponent = torch.empty_like(input, dtype=exponent_dtype)
with self.assertRaisesRegex(RuntimeError,
r"torch\.frexp\(\) expects exponent to have int dtype but got .+"):
torch.frexp(input, out=(mantissa, exponent))
def test_mvlgamma_argcheck(self, device):
def run_test(d):
input = torch.linspace((d - 2) / 2, 10, 10, device=device)
torch.mvlgamma(input, d)
with self.assertRaisesRegex(RuntimeError, r"All elements must be greater than \(p-1\)/2"):
run_test(3)
def test_polygamma_neg(self, device):
with self.assertRaisesRegex(RuntimeError, r'polygamma\(n, x\) does not support negative n\.'):
torch.polygamma(-1, torch.tensor([1.0, 2.0], device=device))
# TODO resolve with opinfos
@onlyCPU
def test_op_invert(self, device):
res = 0xffff - torch.arange(127, dtype=torch.int8)
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
a = torch.arange(127, dtype=dtype)
self.assertEqual(res.to(dtype), ~a)
self.assertEqual(torch.tensor([True, False]), ~torch.tensor([False, True]))
# test exceptions
for dtype in (torch.half, torch.float, torch.double):
a = torch.zeros(10, dtype=dtype)
with self.assertRaises(TypeError):
b = ~a
@dtypes(torch.complex64, torch.complex128)
def test_abs_angle_complex_to_float(self, device, dtype):
# Constructs random complex values
from random import random
random_vals = []
for multiplier in (-1, 1, -10, 10, -100, 100):
for _ in range(10):
random_vals.append(complex(random() * multiplier, random() * multiplier))
for vals in (random_vals, []):
a = np.array(vals, dtype=torch_to_numpy_dtype_dict[dtype])
t = torch.tensor(vals, device=device, dtype=dtype)
for fn_name in ('abs', 'angle'):
torch_fn = getattr(torch, fn_name)
np_fn = getattr(np, fn_name)
# Tests function
np_result = torch.from_numpy(np_fn(a))
torch_result = torch_fn(t).cpu()
self.assertEqual(np_result, torch_result, exact_dtype=True)
# Tests float out
float_dtype = torch.float32 if dtype is torch.complex64 else torch.float64
np_float_out = np_fn(a).astype(torch_to_numpy_dtype_dict[float_dtype])
float_out = torch.empty_like(t).float()
torch_fn(t, out=float_out)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(torch.from_numpy(np_float_out), float_out.cpu())
# Tests float out (resized out)
float_out = torch.empty(1, device=device, dtype=float_dtype)
torch_fn(t, out=float_out)
self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())
# Tests complex out
np_complex_out = np_fn(a)
complex_out = torch.empty_like(t)
torch_fn(t, out=complex_out)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
# Tests complex out (resized out)
complex_out = torch.empty(0, device=device, dtype=dtype)
torch_fn(t, out=complex_out)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
# Tests long out behavior (expected failure)
long_out = torch.empty(0, device=device, dtype=torch.long)
with self.assertRaises(RuntimeError):
torch_fn(t, out=long_out)
# Tests inplace
if fn_name == 'abs':
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
np_fn(a, out=a)
if dtype.is_complex:
with self.assertRaisesRegex(RuntimeError, "In-place abs is not supported for complex tensors."):
torch_inplace_method(t)
return
torch_inplace_method(t)
self.assertEqual(torch.from_numpy(a), t.cpu())
# Note: angle does not have an in-place variant
if fn_name == 'angle':
with self.assertRaises(AttributeError):
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
def check_internal_mem_overlap(self, inplace_op, num_inputs,
dtype, device,
expected_failure=False):
if isinstance(inplace_op, str):
inplace_op = getattr(torch.Tensor, inplace_op)
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
inputs = [input] + [torch.randn_like(input)
for i in range(num_inputs - 1)]
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
def unary_check_input_output_mem_overlap(self, data, sz, op,
expected_failure=False):
def _test(op, output, input):
output_exp = torch.empty_like(output)
op(input, out=output_exp)
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
# output is identical to input:
_test(op, output=data[0:sz], input=data[0:sz])
# output and input are independent:
_test(op, output=data[0:sz], input=data[sz:2 * sz])
# output partially overlaps with input:
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
# TODO: run on non-native device types
@dtypes(torch.double)
def test_unary_out_op_mem_overlap(self, device, dtype):
sz = 3
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
positives = torch.randint(1, 100, (2 * sz,), device=device).double()
ints = torch.randint(-100, 100, (2 * sz,), device=device)
unary_mem_overlap_cases = [
("abs", doubles, True, True, 'cpu'),
("abs", doubles, True, True, 'cuda'),
("acos", doubles, True, True, 'cpu'),
("acos", doubles, True, True, 'cuda'),
("asin", doubles, True, True, 'cpu'),
("asin", doubles, True, True, 'cuda'),
("atan", doubles, True, True, 'cpu'),
("atan", doubles, True, True, 'cuda'),
("acosh", doubles, True, True, 'cpu'),
("acosh", doubles, True, True, 'cuda'),
("asinh", doubles, True, True, 'cpu'),
("asinh", doubles, True, True, 'cuda'),
("atanh", doubles, True, True, 'cpu'),
("atanh", doubles, True, True, 'cuda'),
("bitwise_not", ints, True, True, 'cpu'),
("bitwise_not", ints, True, True, 'cuda'),
("ceil", doubles, True, True, 'cpu'),
("ceil", doubles, True, True, 'cuda'),
("cos", doubles, True, True, 'cpu'),
("cos", doubles, True, True, 'cuda'),
("cosh", doubles, True, True, 'cpu'),
("cosh", doubles, True, True, 'cuda'),
("digamma", doubles, True, True, 'cpu'),
("erf", doubles, True, True, 'cpu'),
("erf", doubles, True, True, 'cuda'),
("erfc", doubles, True, True, 'cpu'),
("erfc", doubles, True, True, 'cuda'),
("erfinv", doubles, True, True, 'cpu'),
("erfinv", doubles, True, True, 'cuda'),
("exp", doubles, True, True, 'cpu'),
("exp", doubles, True, True, 'cuda'),
("exp2", doubles, True, True, 'cpu'),
("exp2", doubles, True, True, 'cuda'),
("expm1", doubles, True, True, 'cpu'),
("expm1", doubles, True, True, 'cuda'),
("floor", doubles, True, True, 'cpu'),
("floor", doubles, True, True, 'cuda'),
("frac", doubles, True, True, 'cpu'),
("frac", doubles, True, True, 'cuda'),
("i0", doubles, True, True, 'cpu'),
("i0", doubles, True, True, 'cuda'),
("log", positives, True, True, 'cpu'),
("log", positives, True, True, 'cuda'),
("log10", positives, True, True, 'cpu'),
("log10", positives, True, True, 'cuda'),
("log1p", positives, True, True, 'cpu'),
("log1p", positives, True, True, 'cuda'),
("log2", positives, True, True, 'cpu'),
("log2", positives, True, True, 'cuda'),
("neg", doubles, True, True, 'cpu'),
("neg", doubles, True, True, 'cuda'),
("reciprocal", doubles, True, True, 'cpu'),
("reciprocal", doubles, True, True, 'cuda'),
("round", doubles, True, True, 'cpu'),
("round", doubles, True, True, 'cuda'),
("rsqrt", positives, True, True, 'cpu'),
("rsqrt", positives, True, True, 'cuda'),
("sin", doubles, True, True, 'cpu'),
("sin", doubles, True, True, 'cuda'),
("sinh", doubles, True, True, 'cpu'),
("sinh", doubles, False, True, 'cuda'),
("sigmoid", doubles, True, True, 'cpu'),
("sigmoid", doubles, True, True, 'cuda'),
("logit", doubles, True, True, 'cpu'),
("logit", doubles, True, True, 'cuda'),
("sqrt", doubles, True, True, 'cpu'),
("sqrt", doubles, False, True, 'cuda'),
("tan", doubles, True, True, 'cpu'),
("tan", doubles, True, True, 'cuda'),
("tanh", doubles, True, True, 'cpu'),
("tanh", doubles, True, True, 'cuda'),
("trunc", doubles, True, True, 'cpu'),
("trunc", doubles, True, True, 'cuda')
]
for (fn, inputs, has_input_output_mem_overlap_check,
has_internal_mem_overlap_check, dev) in unary_mem_overlap_cases:
if dev != device:
continue
out_fn = getattr(torch, fn)
in_fn = getattr(torch.Tensor, fn + '_')
self.unary_check_input_output_mem_overlap(inputs, sz, out_fn,
expected_failure=not has_input_output_mem_overlap_check)
self.check_internal_mem_overlap(in_fn, 1, dtype, dev,
expected_failure=not has_internal_mem_overlap_check)
# TODO: opinfo hardshrink
@onlyCPU
@dtypes(torch.float, torch.double)
def test_hardshrink(self, device, dtype):
data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
self.assertEqual(torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
data.hardshrink(0.3))
self.assertEqual(torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
data.hardshrink(0.5))
# test default lambd=0.5
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
# test non-contiguous case
self.assertEqual(torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
data.t().hardshrink(0.3))
@onlyCPU
@dtypes(torch.float, torch.double)
def test_hardshrink_edge_cases(self, device, dtype) -> None:
def h(values, l_expected):
for l, expected in l_expected.items():
values_tensor = torch.tensor([float(v) for v in values],
dtype=dtype, device=device)
expected_tensor = torch.tensor([float(v) for v in expected],
dtype=dtype, device=device)
self.assertEqual(expected_tensor == values_tensor.hardshrink(l),
torch.ones_like(values_tensor, dtype=torch.bool))
def test_helper(min, max):
h([0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
{0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]})
test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)
@onlyCPU
@slowTest
@dtypes(torch.float)
def test_exp_slow(self, device, dtype):
# Test for https://github.com/pytorch/pytorch/issues/17271
# This is pretty slow on my Macbook but it only takes a few
# seconds on a beefy Xeon server
a = torch.exp(torch.ones(2 ** 31, dtype=dtype, device=device))
b = torch.exp(torch.ones(1, dtype=dtype, device=device))
self.assertEqual(a, b.expand(2 ** 31))
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
@dtypes(torch.float, torch.double)
def test_hardswish(self, device, dtype):
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
expectedOutput = np.multiply(
inputValues,
np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0)
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
expectedOutputTensor = \
torch.tensor(expectedOutput, dtype=dtype, device=device)
# normal
self.assertEqual(torch.nn.functional.hardswish(inputTensor),
expectedOutputTensor)
# inplace
inputTensorCpy = inputTensor.clone().detach()
torch.nn.functional.hardswish(inputTensorCpy, inplace=True)
self.assertEqual(inputTensorCpy, expectedOutputTensor)
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
@dtypes(torch.float, torch.double)
def test_hardsigmoid(self, device, dtype):
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
# normal
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensor),
torch.tensor(expectedOutput, dtype=dtype, device=device))
# inplace
inputTensorCpy = inputTensor.clone().detach()
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True),
torch.tensor(expectedOutput, dtype=dtype, device=device))
@precisionOverride({torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002})
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16)
@dtypes(torch.float, torch.double)
def test_hardsigmoid_backward(self, device, dtype):
inputValues = [-3.0, 3.0, -2.0, 2.0, -6.0, 6.0]
expectedValues = [0.0, 0.0, 1.0 / 6.0, 1.0 / 6.0, 0.0, 0.0]
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device).requires_grad_()
expetedTensor = torch.tensor(expectedValues, dtype=dtype, device=device)
out = torch.nn.functional.hardsigmoid(inputTensor)
out.backward(torch.ones_like(inputTensor))
self.assertEqual(inputTensor.grad, expetedTensor)
@skipIfNoSciPy
@dtypes(torch.float, torch.double)
def test_silu(self, device, dtype):
input_np = np.random.randn(5, 8)
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
input_np = np.concatenate((input_np, special_input), axis=0).astype(
torch_to_numpy_dtype_dict[dtype])
expected_output_np = input_np * scipy.special.expit(input_np)