forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_datapipe.py
1246 lines (1012 loc) · 48.2 KB
/
test_datapipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import itertools
import numpy as np
import os
import os.path
import pickle
import random
import sys
import tarfile
import tempfile
import warnings
import zipfile
import unittest
from unittest import skipIf
from typing import (
Any, Awaitable, Dict, Generic, Iterator, List, NamedTuple, Optional, Tuple,
Type, TypeVar, Set, Union)
import http.server
import socketserver
import threading
import time
from functools import partial
import torch
import torch.nn as nn
import torch.utils.data.datapipes as dp
from torch.testing._internal.common_utils import (TestCase, run_tests)
from torch.utils.data import (
IterDataPipe, MapDataPipe, RandomSampler, DataLoader,
argument_validation, runtime_validation_disabled, runtime_validation)
from torch.utils.data.datapipes.utils.decoder import (
basichandlers as decoder_basichandlers)
try:
import torchvision.transforms
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision")
T_co = TypeVar('T_co', covariant=True)
def create_temp_dir_and_files():
# The temp dir and files within it will be released and deleted in tearDown().
# Adding `noqa: P201` to avoid mypy's warning on not releasing the dir handle within this function.
temp_dir = tempfile.TemporaryDirectory() # noqa: P201
temp_dir_path = temp_dir.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.txt') as f:
temp_file1_name = f.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.byte') as f:
temp_file2_name = f.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.empty') as f:
temp_file3_name = f.name
with open(temp_file1_name, 'w') as f1:
f1.write('0123456789abcdef')
with open(temp_file2_name, 'wb') as f2:
f2.write(b"0123456789abcdef")
temp_sub_dir = tempfile.TemporaryDirectory(dir=temp_dir_path) # noqa: P201
temp_sub_dir_path = temp_sub_dir.name
with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.txt') as f:
temp_sub_file1_name = f.name
with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.byte') as f:
temp_sub_file2_name = f.name
with open(temp_sub_file1_name, 'w') as f1:
f1.write('0123456789abcdef')
with open(temp_sub_file2_name, 'wb') as f2:
f2.write(b"0123456789abcdef")
return [(temp_dir, temp_file1_name, temp_file2_name, temp_file3_name),
(temp_sub_dir, temp_sub_file1_name, temp_sub_file2_name)]
class TestIterableDataPipeBasic(TestCase):
def setUp(self):
ret = create_temp_dir_and_files()
self.temp_dir = ret[0][0]
self.temp_files = ret[0][1:]
self.temp_sub_dir = ret[1][0]
self.temp_sub_files = ret[1][1:]
def tearDown(self):
try:
self.temp_sub_dir.cleanup()
self.temp_dir.cleanup()
except Exception as e:
warnings.warn("TestIterableDatasetBasic was not able to cleanup temp dir due to {}".format(str(e)))
def test_listdirfiles_iterable_datapipe(self):
temp_dir = self.temp_dir.name
datapipe = dp.iter.ListDirFiles(temp_dir, '')
count = 0
for pathname in datapipe:
count = count + 1
self.assertTrue(pathname in self.temp_files)
self.assertEqual(count, len(self.temp_files))
count = 0
datapipe = dp.iter.ListDirFiles(temp_dir, '', recursive=True)
for pathname in datapipe:
count = count + 1
self.assertTrue((pathname in self.temp_files) or (pathname in self.temp_sub_files))
self.assertEqual(count, len(self.temp_files) + len(self.temp_sub_files))
def test_loadfilesfromdisk_iterable_datapipe(self):
# test import datapipe class directly
from torch.utils.data.datapipes.iter import ListDirFiles, LoadFilesFromDisk
temp_dir = self.temp_dir.name
datapipe1 = ListDirFiles(temp_dir, '')
datapipe2 = LoadFilesFromDisk(datapipe1)
count = 0
for rec in datapipe2:
count = count + 1
self.assertTrue(rec[0] in self.temp_files)
with open(rec[0], 'rb') as f:
self.assertEqual(rec[1].read(), f.read())
rec[1].close()
self.assertEqual(count, len(self.temp_files))
def test_readfilesfromtar_iterable_datapipe(self):
temp_dir = self.temp_dir.name
temp_tarfile_pathname = os.path.join(temp_dir, "test_tar.tar")
with tarfile.open(temp_tarfile_pathname, "w:gz") as tar:
tar.add(self.temp_files[0])
tar.add(self.temp_files[1])
tar.add(self.temp_files[2])
datapipe1 = dp.iter.ListDirFiles(temp_dir, '*.tar')
datapipe2 = dp.iter.LoadFilesFromDisk(datapipe1)
datapipe3 = dp.iter.ReadFilesFromTar(datapipe2)
# read extracted files before reaching the end of the tarfile
for rec, temp_file in itertools.zip_longest(datapipe3, self.temp_files):
self.assertTrue(rec is not None and temp_file is not None)
self.assertEqual(os.path.basename(rec[0]), os.path.basename(temp_file))
with open(temp_file, 'rb') as f:
self.assertEqual(rec[1].read(), f.read())
rec[1].close()
# read extracted files after reaching the end of the tarfile
data_refs = list(datapipe3)
self.assertEqual(len(data_refs), len(self.temp_files))
for data_ref, temp_file in zip(data_refs, self.temp_files):
self.assertEqual(os.path.basename(data_ref[0]), os.path.basename(temp_file))
with open(temp_file, 'rb') as f:
self.assertEqual(data_ref[1].read(), f.read())
data_ref[1].close()
def test_readfilesfromzip_iterable_datapipe(self):
temp_dir = self.temp_dir.name
temp_zipfile_pathname = os.path.join(temp_dir, "test_zip.zip")
with zipfile.ZipFile(temp_zipfile_pathname, 'w') as myzip:
myzip.write(self.temp_files[0])
myzip.write(self.temp_files[1])
myzip.write(self.temp_files[2])
datapipe1 = dp.iter.ListDirFiles(temp_dir, '*.zip')
datapipe2 = dp.iter.LoadFilesFromDisk(datapipe1)
datapipe3 = dp.iter.ReadFilesFromZip(datapipe2)
# read extracted files before reaching the end of the zipfile
for rec, temp_file in itertools.zip_longest(datapipe3, self.temp_files):
self.assertTrue(rec is not None and temp_file is not None)
self.assertEqual(os.path.basename(rec[0]), os.path.basename(temp_file))
with open(temp_file, 'rb') as f:
self.assertEqual(rec[1].read(), f.read())
rec[1].close()
# read extracted files before reaching the end of the zipile
data_refs = list(datapipe3)
self.assertEqual(len(data_refs), len(self.temp_files))
for data_ref, temp_file in zip(data_refs, self.temp_files):
self.assertEqual(os.path.basename(data_ref[0]), os.path.basename(temp_file))
with open(temp_file, 'rb') as f:
self.assertEqual(data_ref[1].read(), f.read())
data_ref[1].close()
def test_routeddecoder_iterable_datapipe(self):
temp_dir = self.temp_dir.name
temp_pngfile_pathname = os.path.join(temp_dir, "test_png.png")
png_data = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single)
np.save(temp_pngfile_pathname, png_data)
datapipe1 = dp.iter.ListDirFiles(temp_dir, ['*.png', '*.txt'])
datapipe2 = dp.iter.LoadFilesFromDisk(datapipe1)
def _png_decoder(extension, data):
if extension != 'png':
return None
return np.load(data)
def _helper(prior_dp, dp, channel_first=False):
# Byte stream is not closed
for inp in prior_dp:
self.assertFalse(inp[1].closed)
for inp, rec in zip(prior_dp, dp):
ext = os.path.splitext(rec[0])[1]
if ext == '.png':
expected = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single)
if channel_first:
expected = expected.transpose(2, 0, 1)
self.assertEqual(rec[1], expected)
else:
with open(rec[0], 'rb') as f:
self.assertEqual(rec[1], f.read().decode('utf-8'))
# Corresponding byte stream is closed by Decoder
self.assertTrue(inp[1].closed)
cached = list(datapipe2)
datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder)
datapipe3.add_handler(decoder_basichandlers)
_helper(cached, datapipe3)
cached = list(datapipe2)
datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers)
datapipe4.add_handler(_png_decoder)
_helper(cached, datapipe4, channel_first=True)
def test_groupbykey_iterable_datapipe(self):
temp_dir = self.temp_dir.name
temp_tarfile_pathname = os.path.join(temp_dir, "test_tar.tar")
file_list = [
"a.png", "b.png", "c.json", "a.json", "c.png", "b.json", "d.png",
"d.json", "e.png", "f.json", "g.png", "f.png", "g.json", "e.json",
"h.txt", "h.json"]
with tarfile.open(temp_tarfile_pathname, "w:gz") as tar:
for file_name in file_list:
file_pathname = os.path.join(temp_dir, file_name)
with open(file_pathname, 'w') as f:
f.write('12345abcde')
tar.add(file_pathname)
datapipe1 = dp.iter.ListDirFiles(temp_dir, '*.tar')
datapipe2 = dp.iter.LoadFilesFromDisk(datapipe1)
datapipe3 = dp.iter.ReadFilesFromTar(datapipe2)
datapipe4 = dp.iter.GroupByKey(datapipe3, group_size=2)
expected_result = [("a.png", "a.json"), ("c.png", "c.json"), ("b.png", "b.json"), ("d.png", "d.json"), (
"f.png", "f.json"), ("g.png", "g.json"), ("e.png", "e.json"), ("h.json", "h.txt")]
count = 0
for rec, expected in zip(datapipe4, expected_result):
count = count + 1
self.assertEqual(os.path.basename(rec[0][0]), expected[0])
self.assertEqual(os.path.basename(rec[1][0]), expected[1])
for i in [0, 1]:
self.assertEqual(rec[i][1].read(), b'12345abcde')
rec[i][1].close()
self.assertEqual(count, 8)
class FileLoggerSimpleHTTPRequestHandler(http.server.SimpleHTTPRequestHandler):
def __init__(self, *args, logfile=None, **kwargs):
self.__loggerHandle = None
if logfile is not None:
self.__loggerHandle = open(logfile, 'a+')
super().__init__(*args, **kwargs)
def log_message(self, format, *args):
if self.__loggerHandle is not None:
self.__loggerHandle.write("%s - - [%s] %s\n" %
(self.address_string(),
self.log_date_time_string(),
format % args))
return
def finish(self):
if self.__loggerHandle is not None:
self.__loggerHandle.close()
super().finish()
def setUpLocalServerInThread():
try:
Handler = partial(FileLoggerSimpleHTTPRequestHandler, logfile=None)
socketserver.TCPServer.allow_reuse_address = True
server = socketserver.TCPServer(("", 0), Handler)
server_addr = "{host}:{port}".format(host=server.server_address[0], port=server.server_address[1])
server_thread = threading.Thread(target=server.serve_forever)
server_thread.start()
# Wait a bit for the server to come up
time.sleep(3)
return (server_thread, server_addr, server)
except Exception:
raise
def create_temp_files_for_serving(tmp_dir, file_count, file_size,
file_url_template):
furl_local_file = os.path.join(tmp_dir, "urls_list")
with open(furl_local_file, 'w') as fsum:
for i in range(0, file_count):
f = os.path.join(tmp_dir, "webfile_test_{num}.data".format(num=i))
write_chunk = 1024 * 1024 * 16
rmn_size = file_size
while rmn_size > 0:
with open(f, 'ab+') as fout:
fout.write(os.urandom(min(rmn_size, write_chunk)))
rmn_size = rmn_size - min(rmn_size, write_chunk)
fsum.write(file_url_template.format(num=i))
class TestIterableDataPipeHttp(TestCase):
__server_thread: threading.Thread
__server_addr: str
__server: socketserver.TCPServer
@classmethod
def setUpClass(cls):
try:
(cls.__server_thread, cls.__server_addr,
cls.__server) = setUpLocalServerInThread()
except Exception as e:
warnings.warn("TestIterableDataPipeHttp could\
not set up due to {0}".format(str(e)))
@classmethod
def tearDownClass(cls):
try:
cls.__server.shutdown()
cls.__server_thread.join(timeout=15)
except Exception as e:
warnings.warn("TestIterableDataPipeHttp could\
not tear down (clean up temp directory or terminate\
local server) due to {0}".format(str(e)))
def _http_test_base(self, test_file_size, test_file_count, timeout=None,
chunk=None):
def _get_data_from_tuple_fn(data, *args, **kwargs):
return data[args[0]]
with tempfile.TemporaryDirectory(dir=os.getcwd()) as tmpdir:
# create tmp dir and files for test
base_tmp_dir = os.path.basename(os.path.normpath(tmpdir))
file_url_template = ("http://{server_addr}/{tmp_dir}/"
"/webfile_test_{num}.data\n")\
.format(server_addr=self.__server_addr, tmp_dir=base_tmp_dir,
num='{num}')
create_temp_files_for_serving(tmpdir, test_file_count,
test_file_size, file_url_template)
datapipe_dir_f = dp.iter.ListDirFiles(tmpdir, '*_list')
datapipe_f_lines = dp.iter.ReadLinesFromFile(datapipe_dir_f)
datapipe_line_url: IterDataPipe[str] = \
dp.iter.Map(datapipe_f_lines, _get_data_from_tuple_fn, (1,))
datapipe_http = dp.iter.HttpReader(datapipe_line_url,
timeout=timeout)
datapipe_tob = dp.iter.ToBytes(datapipe_http, chunk=chunk)
for (url, data) in datapipe_tob:
self.assertGreater(len(url), 0)
self.assertRegex(url, r'^http://.+\d+.data$')
if chunk is not None:
self.assertEqual(len(data), chunk)
else:
self.assertEqual(len(data), test_file_size)
@unittest.skip("Stress test on large amount of files skipped\
due to the CI timing constraint.")
def test_stress_http_reader_iterable_datapipes(self):
test_file_size = 10
# STATS: It takes about 5 hours to stress test 16 * 1024 * 1024
# files locally
test_file_count = 1024
self._http_test_base(test_file_size, test_file_count)
@unittest.skip("Test on the very large file skipped\
due to the CI timing constraint.")
def test_large_files_http_reader_iterable_datapipes(self):
# STATS: It takes about 11 mins to test a large file of 64GB locally
test_file_size = 1024 * 1024 * 128
test_file_count = 1
timeout = 30
chunk = 1024 * 1024 * 8
self._http_test_base(test_file_size, test_file_count, timeout=timeout,
chunk=chunk)
class IDP_NoLen(IterDataPipe):
def __init__(self, input_dp):
super().__init__()
self.input_dp = input_dp
def __iter__(self):
for i in self.input_dp:
yield i
class IDP(IterDataPipe):
def __init__(self, input_dp):
super().__init__()
self.input_dp = input_dp
self.length = len(input_dp)
def __iter__(self):
for i in self.input_dp:
yield i
def __len__(self):
return self.length
class MDP(MapDataPipe):
def __init__(self, input_dp):
super().__init__()
self.input_dp = input_dp
self.length = len(input_dp)
def __getitem__(self, index):
return self.input_dp[index]
def __len__(self) -> int:
return self.length
def _fake_fn(data, *args, **kwargs):
return data
def _fake_filter_fn(data, *args, **kwargs):
return data >= 5
def _worker_init_fn(worker_id):
random.seed(123)
class TestFunctionalIterDataPipe(TestCase):
def test_picklable(self):
arr = range(10)
picklable_datapipes: List[Tuple[Type[IterDataPipe], IterDataPipe, Tuple, Dict[str, Any]]] = [
(dp.iter.Map, IDP(arr), (), {}),
(dp.iter.Map, IDP(arr), (_fake_fn, (0, ), {'test': True}), {}),
(dp.iter.Collate, IDP(arr), (), {}),
(dp.iter.Collate, IDP(arr), (_fake_fn, (0, ), {'test': True}), {}),
(dp.iter.Filter, IDP(arr), (_fake_filter_fn, (0, ), {'test': True}), {}),
]
for dpipe, input_dp, dp_args, dp_kwargs in picklable_datapipes:
p = pickle.dumps(dpipe(input_dp, *dp_args, **dp_kwargs)) # type: ignore[call-arg]
unpicklable_datapipes: List[Tuple[Type[IterDataPipe], IterDataPipe, Tuple, Dict[str, Any]]] = [
(dp.iter.Map, IDP(arr), (lambda x: x, ), {}),
(dp.iter.Collate, IDP(arr), (lambda x: x, ), {}),
(dp.iter.Filter, IDP(arr), (lambda x: x >= 5, ), {}),
]
for dpipe, input_dp, dp_args, dp_kwargs in unpicklable_datapipes:
with warnings.catch_warnings(record=True) as wa:
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"^Lambda function is not supported for pickle")
with self.assertRaises(AttributeError):
p = pickle.dumps(datapipe)
def test_concat_datapipe(self):
input_dp1 = IDP(range(10))
input_dp2 = IDP(range(5))
with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"):
dp.iter.Concat()
with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `IterDataPipe`"):
dp.iter.Concat(input_dp1, ()) # type: ignore[arg-type]
concat_dp = input_dp1.concat(input_dp2)
self.assertEqual(len(concat_dp), 15)
self.assertEqual(list(concat_dp), list(range(10)) + list(range(5)))
# Test Reset
self.assertEqual(list(concat_dp), list(range(10)) + list(range(5)))
input_dp_nl = IDP_NoLen(range(5))
concat_dp = input_dp1.concat(input_dp_nl)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(concat_dp)
self.assertEqual(list(concat_dp), list(range(10)) + list(range(5)))
def test_map_datapipe(self):
input_dp = IDP(range(10))
def fn(item, dtype=torch.float, *, sum=False):
data = torch.tensor(item, dtype=dtype)
return data if not sum else data.sum()
map_dp = input_dp.map(fn)
self.assertEqual(len(input_dp), len(map_dp))
for x, y in zip(map_dp, input_dp):
self.assertEqual(x, torch.tensor(y, dtype=torch.float))
map_dp = input_dp.map(fn=fn, fn_args=(torch.int, ), fn_kwargs={'sum': True})
self.assertEqual(len(input_dp), len(map_dp))
for x, y in zip(map_dp, input_dp):
self.assertEqual(x, torch.tensor(y, dtype=torch.int).sum())
from functools import partial
map_dp = input_dp.map(partial(fn, dtype=torch.int, sum=True))
self.assertEqual(len(input_dp), len(map_dp))
for x, y in zip(map_dp, input_dp):
self.assertEqual(x, torch.tensor(y, dtype=torch.int).sum())
input_dp_nl = IDP_NoLen(range(10))
map_dp_nl = input_dp_nl.map()
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(map_dp_nl)
for x, y in zip(map_dp_nl, input_dp_nl):
self.assertEqual(x, torch.tensor(y, dtype=torch.float))
def test_map_datapipe_nested_level(self):
input_dp = IDP([list(range(10)) for _ in range(3)])
def fn(item, *, dtype=torch.float):
return torch.tensor(item, dtype=dtype)
with warnings.catch_warnings(record=True) as wa:
map_dp = input_dp.map(lambda ls: ls * 2, nesting_level=0)
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"^Lambda function is not supported for pickle")
self.assertEqual(len(input_dp), len(map_dp))
for x, y in zip(map_dp, input_dp):
self.assertEqual(x, y * 2)
map_dp = input_dp.map(fn, nesting_level=1)
self.assertEqual(len(input_dp), len(map_dp))
for x, y in zip(map_dp, input_dp):
self.assertEqual(len(x), len(y))
for a, b in zip(x, y):
self.assertEqual(a, torch.tensor(b, dtype=torch.float))
map_dp = input_dp.map(fn, nesting_level=-1)
self.assertEqual(len(input_dp), len(map_dp))
for x, y in zip(map_dp, input_dp):
self.assertEqual(len(x), len(y))
for a, b in zip(x, y):
self.assertEqual(a, torch.tensor(b, dtype=torch.float))
map_dp = input_dp.map(fn, nesting_level=4)
with self.assertRaises(IndexError):
list(map_dp)
with self.assertRaises(ValueError):
input_dp.map(fn, nesting_level=-2)
def test_collate_datapipe(self):
arrs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
input_dp = IDP(arrs)
def _collate_fn(batch):
return torch.tensor(sum(batch), dtype=torch.float)
collate_dp = input_dp.collate(collate_fn=_collate_fn)
self.assertEqual(len(input_dp), len(collate_dp))
for x, y in zip(collate_dp, input_dp):
self.assertEqual(x, torch.tensor(sum(y), dtype=torch.float))
input_dp_nl = IDP_NoLen(arrs)
collate_dp_nl = input_dp_nl.collate()
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(collate_dp_nl)
for x, y in zip(collate_dp_nl, input_dp_nl):
self.assertEqual(x, torch.tensor(y))
def test_batch_datapipe(self):
arrs = list(range(10))
input_dp = IDP(arrs)
with self.assertRaises(AssertionError):
input_dp.batch(batch_size=0)
# Default not drop the last batch
bs = 3
batch_dp = input_dp.batch(batch_size=bs)
self.assertEqual(len(batch_dp), 4)
for i, batch in enumerate(batch_dp):
self.assertEqual(len(batch), 1 if i == 3 else bs)
self.assertEqual(batch, arrs[i * bs: i * bs + len(batch)])
# Drop the last batch
bs = 4
batch_dp = input_dp.batch(batch_size=bs, drop_last=True)
self.assertEqual(len(batch_dp), 2)
for i, batch in enumerate(batch_dp):
self.assertEqual(len(batch), bs)
self.assertEqual(batch, arrs[i * bs: i * bs + len(batch)])
input_dp_nl = IDP_NoLen(range(10))
batch_dp_nl = input_dp_nl.batch(batch_size=2)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(batch_dp_nl)
def test_unbatch_datapipe(self):
target_length = 6
prebatch_dp = IDP(range(target_length))
input_dp = prebatch_dp.batch(3)
unbatch_dp = input_dp.unbatch()
self.assertEqual(len(list(unbatch_dp)), target_length)
for i, res in zip(prebatch_dp, unbatch_dp):
self.assertEqual(i, res)
input_dp = IDP([[0, 1, 2], [3, 4, 5]])
unbatch_dp = input_dp.unbatch()
self.assertEqual(len(list(unbatch_dp)), target_length)
for i, res in zip(prebatch_dp, unbatch_dp):
self.assertEqual(i, res)
input_dp = IDP([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])
unbatch_dp = input_dp.unbatch()
expected_dp = [[0, 1], [2, 3], [4, 5], [6, 7]]
self.assertEqual(len(list(unbatch_dp)), 4)
for i, res in zip(expected_dp, unbatch_dp):
self.assertEqual(i, res)
unbatch_dp = input_dp.unbatch(unbatch_level=2)
expected_dp2 = [0, 1, 2, 3, 4, 5, 6, 7]
self.assertEqual(len(list(unbatch_dp)), 8)
for i, res in zip(expected_dp2, unbatch_dp):
self.assertEqual(i, res)
unbatch_dp = input_dp.unbatch(unbatch_level=-1)
self.assertEqual(len(list(unbatch_dp)), 8)
for i, res in zip(expected_dp2, unbatch_dp):
self.assertEqual(i, res)
input_dp = IDP([[0, 1, 2], [3, 4, 5]])
with self.assertRaises(ValueError):
unbatch_dp = input_dp.unbatch(unbatch_level=-2)
for i in unbatch_dp:
print(i)
with self.assertRaises(IndexError):
unbatch_dp = input_dp.unbatch(unbatch_level=5)
for i in unbatch_dp:
print(i)
def test_bucket_batch_datapipe(self):
input_dp = IDP(range(20))
with self.assertRaises(AssertionError):
input_dp.bucket_batch(batch_size=0)
input_dp_nl = IDP_NoLen(range(20))
bucket_dp_nl = input_dp_nl.bucket_batch(batch_size=7)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(bucket_dp_nl)
# Test Bucket Batch without sort_key
def _helper(**kwargs):
arrs = list(range(100))
random.shuffle(arrs)
input_dp = IDP(arrs)
bucket_dp = input_dp.bucket_batch(**kwargs)
if kwargs["sort_key"] is None:
# BatchDataset as reference
ref_dp = input_dp.batch(batch_size=kwargs['batch_size'], drop_last=kwargs['drop_last'])
for batch, rbatch in zip(bucket_dp, ref_dp):
self.assertEqual(batch, rbatch)
else:
bucket_size = bucket_dp.bucket_size
bucket_num = (len(input_dp) - 1) // bucket_size + 1
it = iter(bucket_dp)
for i in range(bucket_num):
ref = sorted(arrs[i * bucket_size: (i + 1) * bucket_size])
bucket: List = []
while len(bucket) < len(ref):
try:
batch = next(it)
bucket += batch
# If drop last, stop in advance
except StopIteration:
break
if len(bucket) != len(ref):
ref = ref[:len(bucket)]
# Sorted bucket
self.assertEqual(bucket, ref)
_helper(batch_size=7, drop_last=False, sort_key=None)
_helper(batch_size=7, drop_last=True, bucket_size_mul=5, sort_key=None)
# Test Bucket Batch with sort_key
def _sort_fn(data):
return data
_helper(batch_size=7, drop_last=False, bucket_size_mul=5, sort_key=_sort_fn)
_helper(batch_size=7, drop_last=True, bucket_size_mul=5, sort_key=_sort_fn)
def test_filter_datapipe(self):
input_ds = IDP(range(10))
def _filter_fn(data, val, clip=False):
if clip:
return data >= val
return True
filter_dp = input_ds.filter(filter_fn=_filter_fn, fn_args=(5, ))
for data, exp in zip(filter_dp, range(10)):
self.assertEqual(data, exp)
filter_dp = input_ds.filter(filter_fn=_filter_fn, fn_kwargs={'val': 5, 'clip': True})
for data, exp in zip(filter_dp, range(5, 10)):
self.assertEqual(data, exp)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(filter_dp)
def _non_bool_fn(data):
return 1
filter_dp = input_ds.filter(filter_fn=_non_bool_fn)
with self.assertRaises(ValueError):
temp = list(filter_dp)
def test_filter_datapipe_nested_list(self):
input_ds = IDP(range(10)).batch(5)
def _filter_fn(data, val):
return data >= val
filter_dp = input_ds.filter(nesting_level=-1, filter_fn=_filter_fn, fn_kwargs={'val': 5})
expected_dp1 = [[5, 6, 7, 8, 9]]
self.assertEqual(len(list(filter_dp)), len(expected_dp1))
for data, exp in zip(filter_dp, expected_dp1):
self.assertEqual(data, exp)
filter_dp = input_ds.filter(nesting_level=-1, drop_empty_batches=False, filter_fn=_filter_fn, fn_kwargs={'val': 5})
expected_dp2: List[List[int]] = [[], [5, 6, 7, 8, 9]]
self.assertEqual(len(list(filter_dp)), len(expected_dp2))
for data, exp in zip(filter_dp, expected_dp2):
self.assertEqual(data, exp)
with self.assertRaises(IndexError):
filter_dp = input_ds.filter(nesting_level=5, filter_fn=_filter_fn, fn_kwargs={'val': 5})
temp = list(filter_dp)
input_ds = IDP(range(10)).batch(3)
filter_dp = input_ds.filter(lambda ls: len(ls) >= 3)
expected_dp3: List[List[int]] = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
self.assertEqual(len(list(filter_dp)), len(expected_dp3))
for data, exp in zip(filter_dp, expected_dp3):
self.assertEqual(data, exp)
input_ds = IDP([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [1, 2, 3]]])
filter_dp = input_ds.filter(lambda x: x > 3, nesting_level=-1)
expected_dp4 = [[[4, 5]], [[6, 7, 8]]]
self.assertEqual(len(list(filter_dp)), len(expected_dp4))
for data2, exp2 in zip(filter_dp, expected_dp4):
self.assertEqual(data2, exp2)
input_ds = IDP([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [1, 2, 3]]])
filter_dp = input_ds.filter(lambda x: x > 7, nesting_level=-1)
expected_dp5 = [[[8]]]
self.assertEqual(len(list(filter_dp)), len(expected_dp5))
for data2, exp2 in zip(filter_dp, expected_dp5):
self.assertEqual(data2, exp2)
input_ds = IDP([[[0, 1], [3, 4]], [[6, 7, 8], [1, 2, 3]]])
filter_dp = input_ds.filter(lambda ls: len(ls) >= 3, nesting_level=1)
expected_dp6 = [[[6, 7, 8], [1, 2, 3]]]
self.assertEqual(len(list(filter_dp)), len(expected_dp6))
for data2, exp2 in zip(filter_dp, expected_dp6):
self.assertEqual(data2, exp2)
def test_sampler_datapipe(self):
input_dp = IDP(range(10))
# Default SequentialSampler
sampled_dp = dp.iter.Sampler(input_dp) # type: ignore[var-annotated]
self.assertEqual(len(sampled_dp), 10)
for i, x in enumerate(sampled_dp):
self.assertEqual(x, i)
# RandomSampler
random_sampled_dp = dp.iter.Sampler(input_dp, sampler=RandomSampler, sampler_kwargs={'replacement': True}) # type: ignore[var-annotated] # noqa: B950
# Requires `__len__` to build SamplerDataPipe
input_dp_nolen = IDP_NoLen(range(10))
with self.assertRaises(AssertionError):
sampled_dp = dp.iter.Sampler(input_dp_nolen)
def test_shuffle_datapipe(self):
exp = list(range(20))
input_ds = IDP(exp)
with self.assertRaises(AssertionError):
shuffle_dp = input_ds.shuffle(buffer_size=0)
for bs in (5, 20, 25):
shuffle_dp = input_ds.shuffle(buffer_size=bs)
self.assertEqual(len(shuffle_dp), len(input_ds))
random.seed(123)
res = list(shuffle_dp)
self.assertEqual(sorted(res), exp)
# Test Deterministic
for num_workers in (0, 1):
random.seed(123)
dl = DataLoader(shuffle_dp, num_workers=num_workers, worker_init_fn=_worker_init_fn)
dl_res = list(dl)
self.assertEqual(res, dl_res)
shuffle_dp_nl = IDP_NoLen(range(20)).shuffle(buffer_size=5)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(shuffle_dp_nl)
@skipIfNoTorchVision
def test_transforms_datapipe(self):
torch.set_default_dtype(torch.float)
# A sequence of numpy random numbers representing 3-channel images
w = h = 32
inputs = [np.random.randint(0, 255, (h, w, 3), dtype=np.uint8) for i in range(10)]
tensor_inputs = [torch.tensor(x, dtype=torch.float).permute(2, 0, 1) / 255. for x in inputs]
input_dp = IDP(inputs)
# Raise TypeError for python function
with self.assertRaisesRegex(TypeError, r"`transforms` are required to be"):
input_dp.legacy_transforms(_fake_fn)
# transforms.Compose of several transforms
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Pad(1, fill=1, padding_mode='constant'),
])
tsfm_dp = input_dp.legacy_transforms(transforms)
self.assertEqual(len(tsfm_dp), len(input_dp))
for tsfm_data, input_data in zip(tsfm_dp, tensor_inputs):
self.assertEqual(tsfm_data[:, 1:(h + 1), 1:(w + 1)], input_data)
# nn.Sequential of several transforms (required to be instances of nn.Module)
input_dp = IDP(tensor_inputs)
transforms = nn.Sequential(
torchvision.transforms.Pad(1, fill=1, padding_mode='constant'),
)
tsfm_dp = input_dp.legacy_transforms(transforms)
self.assertEqual(len(tsfm_dp), len(input_dp))
for tsfm_data, input_data in zip(tsfm_dp, tensor_inputs):
self.assertEqual(tsfm_data[:, 1:(h + 1), 1:(w + 1)], input_data)
# Single transform
input_dp = IDP_NoLen(inputs) # type: ignore[assignment]
transform = torchvision.transforms.ToTensor()
tsfm_dp = input_dp.legacy_transforms(transform)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(tsfm_dp)
for tsfm_data, input_data in zip(tsfm_dp, tensor_inputs):
self.assertEqual(tsfm_data, input_data)
def test_zip_datapipe(self):
with self.assertRaises(TypeError):
dp.iter.Zip(IDP(range(10)), list(range(10))) # type: ignore[arg-type]
zipped_dp = dp.iter.Zip(IDP(range(10)), IDP_NoLen(range(5))) # type: ignore[var-annotated]
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(zipped_dp)
exp = list((i, i) for i in range(5))
self.assertEqual(list(zipped_dp), exp)
zipped_dp = dp.iter.Zip(IDP(range(10)), IDP(range(5)))
self.assertEqual(len(zipped_dp), 5)
self.assertEqual(list(zipped_dp), exp)
# Reset
self.assertEqual(list(zipped_dp), exp)
class TestFunctionalMapDataPipe(TestCase):
def test_picklable(self):
arr = range(10)
picklable_datapipes: List[
Tuple[Type[MapDataPipe], MapDataPipe, Tuple, Dict[str, Any]]
] = [
(dp.map.Map, MDP(arr), (), {}),
(dp.map.Map, MDP(arr), (_fake_fn, (0,), {'test': True}), {}),
]
for dpipe, input_dp, dp_args, dp_kwargs in picklable_datapipes:
p = pickle.dumps(dpipe(input_dp, *dp_args, **dp_kwargs)) # type: ignore[call-arg]
unpicklable_datapipes: List[
Tuple[Type[MapDataPipe], MapDataPipe, Tuple, Dict[str, Any]]
] = [
(dp.map.Map, MDP(arr), (lambda x: x,), {}),
]
for dpipe, input_dp, dp_args, dp_kwargs in unpicklable_datapipes:
with warnings.catch_warnings(record=True) as wa:
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self.assertEqual(len(wa), 1)
self.assertRegex(
str(wa[0].message), r"^Lambda function is not supported for pickle"
)
with self.assertRaises(AttributeError):
p = pickle.dumps(datapipe)
def test_map_datapipe(self):
arr = range(10)
input_dp = MDP(arr)
def fn(item, dtype=torch.float, *, sum=False):
data = torch.tensor(item, dtype=dtype)
return data if not sum else data.sum()
map_dp = input_dp.map(fn)
self.assertEqual(len(input_dp), len(map_dp))
for index in arr:
self.assertEqual(
map_dp[index], torch.tensor(input_dp[index], dtype=torch.float)
)
map_dp = input_dp.map(fn=fn, fn_args=(torch.int,), fn_kwargs={'sum': True})
self.assertEqual(len(input_dp), len(map_dp))
for index in arr:
self.assertEqual(
map_dp[index], torch.tensor(input_dp[index], dtype=torch.int).sum()
)
from functools import partial
map_dp = input_dp.map(partial(fn, dtype=torch.int, sum=True))
self.assertEqual(len(input_dp), len(map_dp))
for index in arr:
self.assertEqual(
map_dp[index], torch.tensor(input_dp[index], dtype=torch.int).sum()
)
# Metaclass conflict for Python 3.6
# Multiple inheritance with NamedTuple is not supported for Python 3.9
_generic_namedtuple_allowed = sys.version_info >= (3, 7) and sys.version_info < (3, 9)
if _generic_namedtuple_allowed:
class InvalidData(Generic[T_co], NamedTuple):
name: str
data: T_co
class TestTyping(TestCase):
def test_subtype(self):
from torch.utils.data._typing import issubtype
basic_type = (int, str, bool, float, complex,
list, tuple, dict, set, T_co)
for t in basic_type:
self.assertTrue(issubtype(t, t))
self.assertTrue(issubtype(t, Any))
if t == T_co:
self.assertTrue(issubtype(Any, t))
else:
self.assertFalse(issubtype(Any, t))
for t1, t2 in itertools.product(basic_type, basic_type):
if t1 == t2 or t2 == T_co:
self.assertTrue(issubtype(t1, t2))
else:
self.assertFalse(issubtype(t1, t2))
T = TypeVar('T', int, str)
S = TypeVar('S', bool, Union[str, int], Tuple[int, T]) # type: ignore[valid-type]
types = ((int, Optional[int]),
(List, Union[int, list]),
(Tuple[int, str], S),
(Tuple[int, str], tuple),
(T, S),
(S, T_co),
(T, Union[S, Set]))
for sub, par in types:
self.assertTrue(issubtype(sub, par))
self.assertFalse(issubtype(par, sub))
subscriptable_types = {
List: 1,
Tuple: 2, # use 2 parameters
Set: 1,
Dict: 2,
}
for subscript_type, n in subscriptable_types.items():
for ts in itertools.combinations(types, n):
subs, pars = zip(*ts)
sub = subscript_type[subs] # type: ignore[index]
par = subscript_type[pars] # type: ignore[index]
self.assertTrue(issubtype(sub, par))
self.assertFalse(issubtype(par, sub))
# Non-recursive check
self.assertTrue(issubtype(par, sub, recursive=False))
def test_issubinstance(self):
from torch.utils.data._typing import issubinstance