Skip to content

Latest commit

 

History

History
executable file
·
180 lines (138 loc) · 9.9 KB

README.md

File metadata and controls

executable file
·
180 lines (138 loc) · 9.9 KB

Text2Scene-bib

A list of materials related to text2scene

Dataset investigation

Abstract scene generation

Learn commonsense spatiotemporal knowledge

3D scene generation

3D shape generation

Photorealistic image synthesis

GAN conditioned on text (Degrade on general images)

Utilize pixel-wise semantic labels

Semantic layout as intermediate representation OR Retrieval from oject database

  • Semi-parametric Image Synthesis (CVPR-2018)

    • Target: Semantic layout -> Photographic image
    • Method:
      • Parametric + Non-parametric (segment retrieval)
      • Segment database -> retrieve -> composite -> resolve occlusion -> post-process
    • Dataset: Cityscapes; NYU; ADE20K (See Datasets in this paper)
    • Code: SIMS
    • Demo: Semi-parametric Image Synthesis
  • Image Generation from Scene Graphs (CVPR-2018)

    • Target: Scene graphs -> Photographic images
    • Method:
      • groud-truth object positions -> scene graphs
      • Graph processing: graph convolution network
      • symbolic graph -> scene layout: bounding box & segmentation prediction
      • scene layout -> image: cascaded refinement network (CRN)
      • image -> realistic image: adversarial training
    • Dataset:
  • Inferring semantic layout for hierarchical text-to-image synthesis (CVPR-2018)

    • Target: text -> photographic image
    • Method: text -> semantic layout (box layout & shape) -> image
    • Dataset: COCO

Image query

Video generation

Visual story telling