forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cli-automl-img-cls-ml-task-fridge-items.yml
70 lines (61 loc) · 1.6 KB
/
cli-automl-img-cls-ml-task-fridge-items.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
$schema: https://azuremlsdk2.blob.core.windows.net/preview/0.0.1/autoMLJob.schema.json
type: automl
experiment_name: dpv2-cli-automl-image-classification-multilabel-experiment
description: A multi-label Image classification job using fridge items dataset
compute: azureml:gpu-cluster
task: image_classification_multilabel
log_verbosity: debug
primary_metric: iou
target_column_name: label
training_data:
# Update the path, if prepare_data.py is using data_path other than "./data"
path: data/training-mltable-folder
type: mltable
validation_data:
# Update the path, if prepare_data.py is using data_path other than "./data"
path: data/validation-mltable-folder
type: mltable
limits:
timeout_minutes: 60
max_trials: 10
max_concurrent_trials: 2
training_parameters:
early_stopping: True
evaluation_frequency: 1
sweep:
sampling_algorithm: random
early_termination:
type: bandit
evaluation_interval: 2
slack_factor: 0.2
delay_evaluation: 6
search_space:
- model_name:
type: choice
values: [vitb16r224]
learning_rate:
type: uniform
min_value: 0.005
max_value: 0.05
number_of_epochs:
type: choice
values: [15, 30]
gradient_accumulation_step:
type: choice
values: [1, 2]
- model_name:
type: choice
values: [seresnext]
learning_rate:
type: uniform
min_value: 0.005
max_value: 0.05
validation_resize_size:
type: choice
values: [288, 320, 352]
validation_crop_size:
type: choice
values: [224, 256]
training_crop_size:
type: choice
values: [224, 256]