forked from DataDog/zstd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuf_compress.c
1438 lines (1264 loc) · 56.3 KB
/
huf_compress.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* Huffman encoder, part of New Generation Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include "zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "compiler.h"
#include "bitstream.h"
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
#include "fse.h" /* header compression */
#include "huf.h"
#include "error_private.h"
#include "bits.h" /* ZSTD_highbit32 */
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* **************************************************************
* Required declarations
****************************************************************/
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
/* **************************************************************
* Debug Traces
****************************************************************/
#if DEBUGLEVEL >= 2
static size_t showU32(const U32* arr, size_t size)
{
size_t u;
for (u=0; u<size; u++) {
RAWLOG(6, " %u", arr[u]); (void)arr;
}
RAWLOG(6, " \n");
return size;
}
static size_t HUF_getNbBits(HUF_CElt elt);
static size_t showCTableBits(const HUF_CElt* ctable, size_t size)
{
size_t u;
for (u=0; u<size; u++) {
RAWLOG(6, " %zu", HUF_getNbBits(ctable[u])); (void)ctable;
}
RAWLOG(6, " \n");
return size;
}
static size_t showHNodeSymbols(const nodeElt* hnode, size_t size)
{
size_t u;
for (u=0; u<size; u++) {
RAWLOG(6, " %u", hnode[u].byte); (void)hnode;
}
RAWLOG(6, " \n");
return size;
}
static size_t showHNodeBits(const nodeElt* hnode, size_t size)
{
size_t u;
for (u=0; u<size; u++) {
RAWLOG(6, " %u", hnode[u].nbBits); (void)hnode;
}
RAWLOG(6, " \n");
return size;
}
#endif
/* *******************************************************
* HUF : Huffman block compression
*********************************************************/
#define HUF_WORKSPACE_MAX_ALIGNMENT 8
static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
{
size_t const mask = align - 1;
size_t const rem = (size_t)workspace & mask;
size_t const add = (align - rem) & mask;
BYTE* const aligned = (BYTE*)workspace + add;
assert((align & (align - 1)) == 0); /* pow 2 */
assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
if (*workspaceSizePtr >= add) {
assert(add < align);
assert(((size_t)aligned & mask) == 0);
*workspaceSizePtr -= add;
return aligned;
} else {
*workspaceSizePtr = 0;
return NULL;
}
}
/* HUF_compressWeights() :
* Same as FSE_compress(), but dedicated to huff0's weights compression.
* The use case needs much less stack memory.
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
*/
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
typedef struct {
FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
unsigned count[HUF_TABLELOG_MAX+1];
S16 norm[HUF_TABLELOG_MAX+1];
} HUF_CompressWeightsWksp;
static size_t
HUF_compressWeights(void* dst, size_t dstSize,
const void* weightTable, size_t wtSize,
void* workspace, size_t workspaceSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
unsigned maxSymbolValue = HUF_TABLELOG_MAX;
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
/* init conditions */
if (wtSize <= 1) return 0; /* Not compressible */
/* Scan input and build symbol stats */
{ unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
}
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
/* Write table description header */
{ CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
op += hSize;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
return (size_t)(op-ostart);
}
static size_t HUF_getNbBits(HUF_CElt elt)
{
return elt & 0xFF;
}
static size_t HUF_getNbBitsFast(HUF_CElt elt)
{
return elt;
}
static size_t HUF_getValue(HUF_CElt elt)
{
return elt & ~(size_t)0xFF;
}
static size_t HUF_getValueFast(HUF_CElt elt)
{
return elt;
}
static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
{
assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
*elt = nbBits;
}
static void HUF_setValue(HUF_CElt* elt, size_t value)
{
size_t const nbBits = HUF_getNbBits(*elt);
if (nbBits > 0) {
assert((value >> nbBits) == 0);
*elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
}
}
typedef struct {
HUF_CompressWeightsWksp wksp;
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
} HUF_WriteCTableWksp;
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
void* workspace, size_t workspaceSize)
{
HUF_CElt const* const ct = CTable + 1;
BYTE* op = (BYTE*)dst;
U32 n;
HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp));
/* check conditions */
if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
/* convert to weight */
wksp->bitsToWeight[0] = 0;
for (n=1; n<huffLog+1; n++)
wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
for (n=0; n<maxSymbolValue; n++)
wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
/* attempt weights compression by FSE */
if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
op[0] = (BYTE)hSize;
return hSize+1;
} }
/* write raw values as 4-bits (max : 15) */
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
for (n=0; n<maxSymbolValue; n+=2)
op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
return ((maxSymbolValue+1)/2) + 1;
}
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
{
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
U32 nbSymbols = 0;
HUF_CElt* const ct = CTable + 1;
/* get symbol weights */
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
*hasZeroWeights = (rankVal[0] > 0);
/* check result */
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
CTable[0] = tableLog;
/* Prepare base value per rank */
{ U32 n, nextRankStart = 0;
for (n=1; n<=tableLog; n++) {
U32 curr = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = curr;
} }
/* fill nbBits */
{ U32 n; for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
} }
/* fill val */
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
/* determine stating value per rank */
valPerRank[tableLog+1] = 0; /* for w==0 */
{ U16 min = 0;
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
/* assign value within rank, symbol order */
{ U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
}
*maxSymbolValuePtr = nbSymbols - 1;
return readSize;
}
U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
{
const HUF_CElt* const ct = CTable + 1;
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
return (U32)HUF_getNbBits(ct[symbolValue]);
}
/**
* HUF_setMaxHeight():
* Try to enforce @targetNbBits on the Huffman tree described in @huffNode.
*
* It attempts to convert all nodes with nbBits > @targetNbBits
* to employ @targetNbBits instead. Then it adjusts the tree
* so that it remains a valid canonical Huffman tree.
*
* @pre The sum of the ranks of each symbol == 2^largestBits,
* where largestBits == huffNode[lastNonNull].nbBits.
* @post The sum of the ranks of each symbol == 2^largestBits,
* where largestBits is the return value (expected <= targetNbBits).
*
* @param huffNode The Huffman tree modified in place to enforce targetNbBits.
* It's presumed sorted, from most frequent to rarest symbol.
* @param lastNonNull The symbol with the lowest count in the Huffman tree.
* @param targetNbBits The allowed number of bits, which the Huffman tree
* may not respect. After this function the Huffman tree will
* respect targetNbBits.
* @return The maximum number of bits of the Huffman tree after adjustment.
*/
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 targetNbBits)
{
const U32 largestBits = huffNode[lastNonNull].nbBits;
/* early exit : no elt > targetNbBits, so the tree is already valid. */
if (largestBits <= targetNbBits) return largestBits;
DEBUGLOG(5, "HUF_setMaxHeight (targetNbBits = %u)", targetNbBits);
/* there are several too large elements (at least >= 2) */
{ int totalCost = 0;
const U32 baseCost = 1 << (largestBits - targetNbBits);
int n = (int)lastNonNull;
/* Adjust any ranks > targetNbBits to targetNbBits.
* Compute totalCost, which is how far the sum of the ranks is
* we are over 2^largestBits after adjust the offending ranks.
*/
while (huffNode[n].nbBits > targetNbBits) {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
huffNode[n].nbBits = (BYTE)targetNbBits;
n--;
}
/* n stops at huffNode[n].nbBits <= targetNbBits */
assert(huffNode[n].nbBits <= targetNbBits);
/* n end at index of smallest symbol using < targetNbBits */
while (huffNode[n].nbBits == targetNbBits) --n;
/* renorm totalCost from 2^largestBits to 2^targetNbBits
* note : totalCost is necessarily a multiple of baseCost */
assert(((U32)totalCost & (baseCost - 1)) == 0);
totalCost >>= (largestBits - targetNbBits);
assert(totalCost > 0);
/* repay normalized cost */
{ U32 const noSymbol = 0xF0F0F0F0;
U32 rankLast[HUF_TABLELOG_MAX+2];
/* Get pos of last (smallest = lowest cum. count) symbol per rank */
ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
{ U32 currentNbBits = targetNbBits;
int pos;
for (pos=n ; pos >= 0; pos--) {
if (huffNode[pos].nbBits >= currentNbBits) continue;
currentNbBits = huffNode[pos].nbBits; /* < targetNbBits */
rankLast[targetNbBits-currentNbBits] = (U32)pos;
} }
while (totalCost > 0) {
/* Try to reduce the next power of 2 above totalCost because we
* gain back half the rank.
*/
U32 nBitsToDecrease = ZSTD_highbit32((U32)totalCost) + 1;
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
U32 const highPos = rankLast[nBitsToDecrease];
U32 const lowPos = rankLast[nBitsToDecrease-1];
if (highPos == noSymbol) continue;
/* Decrease highPos if no symbols of lowPos or if it is
* not cheaper to remove 2 lowPos than highPos.
*/
if (lowPos == noSymbol) break;
{ U32 const highTotal = huffNode[highPos].count;
U32 const lowTotal = 2 * huffNode[lowPos].count;
if (highTotal <= lowTotal) break;
} }
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
nBitsToDecrease++;
assert(rankLast[nBitsToDecrease] != noSymbol);
/* Increase the number of bits to gain back half the rank cost. */
totalCost -= 1 << (nBitsToDecrease-1);
huffNode[rankLast[nBitsToDecrease]].nbBits++;
/* Fix up the new rank.
* If the new rank was empty, this symbol is now its smallest.
* Otherwise, this symbol will be the largest in the new rank so no adjustment.
*/
if (rankLast[nBitsToDecrease-1] == noSymbol)
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
/* Fix up the old rank.
* If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
* it must be the only symbol in its rank, so the old rank now has no symbols.
* Otherwise, since the Huffman nodes are sorted by count, the previous position is now
* the smallest node in the rank. If the previous position belongs to a different rank,
* then the rank is now empty.
*/
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
rankLast[nBitsToDecrease] = noSymbol;
else {
rankLast[nBitsToDecrease]--;
if (huffNode[rankLast[nBitsToDecrease]].nbBits != targetNbBits-nBitsToDecrease)
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
}
} /* while (totalCost > 0) */
/* If we've removed too much weight, then we have to add it back.
* To avoid overshooting again, we only adjust the smallest rank.
* We take the largest nodes from the lowest rank 0 and move them
* to rank 1. There's guaranteed to be enough rank 0 symbols because
* TODO.
*/
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
/* special case : no rank 1 symbol (using targetNbBits-1);
* let's create one from largest rank 0 (using targetNbBits).
*/
if (rankLast[1] == noSymbol) {
while (huffNode[n].nbBits == targetNbBits) n--;
huffNode[n+1].nbBits--;
assert(n >= 0);
rankLast[1] = (U32)(n+1);
totalCost++;
continue;
}
huffNode[ rankLast[1] + 1 ].nbBits--;
rankLast[1]++;
totalCost ++;
}
} /* repay normalized cost */
} /* there are several too large elements (at least >= 2) */
return targetNbBits;
}
typedef struct {
U16 base;
U16 curr;
} rankPos;
typedef nodeElt huffNodeTable[2 * (HUF_SYMBOLVALUE_MAX + 1)];
/* Number of buckets available for HUF_sort() */
#define RANK_POSITION_TABLE_SIZE 192
typedef struct {
huffNodeTable huffNodeTbl;
rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
} HUF_buildCTable_wksp_tables;
/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
* Strategy is to use as many buckets as possible for representing distinct
* counts while using the remainder to represent all "large" counts.
*
* To satisfy this requirement for 192 buckets, we can do the following:
* Let buckets 0-166 represent distinct counts of [0, 166]
* Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
*/
#define RANK_POSITION_MAX_COUNT_LOG 32
#define RANK_POSITION_LOG_BUCKETS_BEGIN ((RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */)
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF (RANK_POSITION_LOG_BUCKETS_BEGIN + ZSTD_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */)
/* Return the appropriate bucket index for a given count. See definition of
* RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
*/
static U32 HUF_getIndex(U32 const count) {
return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
? count
: ZSTD_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
}
/* Helper swap function for HUF_quickSortPartition() */
static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
nodeElt tmp = *a;
*a = *b;
*b = tmp;
}
/* Returns 0 if the huffNode array is not sorted by descending count */
MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
U32 i;
for (i = 1; i < maxSymbolValue1; ++i) {
if (huffNode[i].count > huffNode[i-1].count) {
return 0;
}
}
return 1;
}
/* Insertion sort by descending order */
HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
int i;
int const size = high-low+1;
huffNode += low;
for (i = 1; i < size; ++i) {
nodeElt const key = huffNode[i];
int j = i - 1;
while (j >= 0 && huffNode[j].count < key.count) {
huffNode[j + 1] = huffNode[j];
j--;
}
huffNode[j + 1] = key;
}
}
/* Pivot helper function for quicksort. */
static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
/* Simply select rightmost element as pivot. "Better" selectors like
* median-of-three don't experimentally appear to have any benefit.
*/
U32 const pivot = arr[high].count;
int i = low - 1;
int j = low;
for ( ; j < high; j++) {
if (arr[j].count > pivot) {
i++;
HUF_swapNodes(&arr[i], &arr[j]);
}
}
HUF_swapNodes(&arr[i + 1], &arr[high]);
return i + 1;
}
/* Classic quicksort by descending with partially iterative calls
* to reduce worst case callstack size.
*/
static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
int const kInsertionSortThreshold = 8;
if (high - low < kInsertionSortThreshold) {
HUF_insertionSort(arr, low, high);
return;
}
while (low < high) {
int const idx = HUF_quickSortPartition(arr, low, high);
if (idx - low < high - idx) {
HUF_simpleQuickSort(arr, low, idx - 1);
low = idx + 1;
} else {
HUF_simpleQuickSort(arr, idx + 1, high);
high = idx - 1;
}
}
}
/**
* HUF_sort():
* Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
* This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
*
* @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
* Must have (maxSymbolValue + 1) entries.
* @param[in] count Histogram of the symbols.
* @param[in] maxSymbolValue Maximum symbol value.
* @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
*/
static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
U32 n;
U32 const maxSymbolValue1 = maxSymbolValue+1;
/* Compute base and set curr to base.
* For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
* See HUF_getIndex to see bucketing strategy.
* We attribute each symbol to lowerRank's base value, because we want to know where
* each rank begins in the output, so for rank R we want to count ranks R+1 and above.
*/
ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
for (n = 0; n < maxSymbolValue1; ++n) {
U32 lowerRank = HUF_getIndex(count[n]);
assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
rankPosition[lowerRank].base++;
}
assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
/* Set up the rankPosition table */
for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
rankPosition[n-1].base += rankPosition[n].base;
rankPosition[n-1].curr = rankPosition[n-1].base;
}
/* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
for (n = 0; n < maxSymbolValue1; ++n) {
U32 const c = count[n];
U32 const r = HUF_getIndex(c) + 1;
U32 const pos = rankPosition[r].curr++;
assert(pos < maxSymbolValue1);
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
/* Sort each bucket. */
for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
int const bucketSize = rankPosition[n].curr - rankPosition[n].base;
U32 const bucketStartIdx = rankPosition[n].base;
if (bucketSize > 1) {
assert(bucketStartIdx < maxSymbolValue1);
HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
}
}
assert(HUF_isSorted(huffNode, maxSymbolValue1));
}
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
*/
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
/* HUF_buildTree():
* Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
*
* @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
* @param maxSymbolValue The maximum symbol value.
* @return The smallest node in the Huffman tree (by count).
*/
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
{
nodeElt* const huffNode0 = huffNode - 1;
int nonNullRank;
int lowS, lowN;
int nodeNb = STARTNODE;
int n, nodeRoot;
DEBUGLOG(5, "HUF_buildTree (alphabet size = %u)", maxSymbolValue + 1);
/* init for parents */
nonNullRank = (int)maxSymbolValue;
while(huffNode[nonNullRank].count == 0) nonNullRank--;
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
nodeNb++; lowS-=2;
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
/* create parents */
while (nodeNb <= nodeRoot) {
int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
nodeNb++;
}
/* distribute weights (unlimited tree height) */
huffNode[nodeRoot].nbBits = 0;
for (n=nodeRoot-1; n>=STARTNODE; n--)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
for (n=0; n<=nonNullRank; n++)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
DEBUGLOG(6, "Initial distribution of bits completed (%zu sorted symbols)", showHNodeBits(huffNode, maxSymbolValue+1));
return nonNullRank;
}
/**
* HUF_buildCTableFromTree():
* Build the CTable given the Huffman tree in huffNode.
*
* @param[out] CTable The output Huffman CTable.
* @param huffNode The Huffman tree.
* @param nonNullRank The last and smallest node in the Huffman tree.
* @param maxSymbolValue The maximum symbol value.
* @param maxNbBits The exact maximum number of bits used in the Huffman tree.
*/
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
{
HUF_CElt* const ct = CTable + 1;
/* fill result into ctable (val, nbBits) */
int n;
U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
int const alphabetSize = (int)(maxSymbolValue + 1);
for (n=0; n<=nonNullRank; n++)
nbPerRank[huffNode[n].nbBits]++;
/* determine starting value per rank */
{ U16 min = 0;
for (n=(int)maxNbBits; n>0; n--) {
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
for (n=0; n<alphabetSize; n++)
HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
for (n=0; n<alphabetSize; n++)
HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
CTable[0] = maxNbBits;
}
size_t
HUF_buildCTable_wksp(HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
void* workSpace, size_t wkspSize)
{
HUF_buildCTable_wksp_tables* const wksp_tables =
(HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
nodeElt* const huffNode = huffNode0+1;
int nonNullRank;
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE == sizeof(HUF_buildCTable_wksp_tables));
DEBUGLOG(5, "HUF_buildCTable_wksp (alphabet size = %u)", maxSymbolValue+1);
/* safety checks */
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
return ERROR(workSpace_tooSmall);
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
return ERROR(maxSymbolValue_tooLarge);
ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
/* sort, decreasing order */
HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
DEBUGLOG(6, "sorted symbols completed (%zu symbols)", showHNodeSymbols(huffNode, maxSymbolValue+1));
/* build tree */
nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
/* determine and enforce maxTableLog */
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
return maxNbBits;
}
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
HUF_CElt const* ct = CTable + 1;
size_t nbBits = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
nbBits += HUF_getNbBits(ct[s]) * count[s];
}
return nbBits >> 3;
}
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
HUF_CElt const* ct = CTable + 1;
int bad = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
}
return !bad;
}
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
/** HUF_CStream_t:
* Huffman uses its own BIT_CStream_t implementation.
* There are three major differences from BIT_CStream_t:
* 1. HUF_addBits() takes a HUF_CElt (size_t) which is
* the pair (nbBits, value) in the format:
* format:
* - Bits [0, 4) = nbBits
* - Bits [4, 64 - nbBits) = 0
* - Bits [64 - nbBits, 64) = value
* 2. The bitContainer is built from the upper bits and
* right shifted. E.g. to add a new value of N bits
* you right shift the bitContainer by N, then or in
* the new value into the N upper bits.
* 3. The bitstream has two bit containers. You can add
* bits to the second container and merge them into
* the first container.
*/
#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
typedef struct {
size_t bitContainer[2];
size_t bitPos[2];
BYTE* startPtr;
BYTE* ptr;
BYTE* endPtr;
} HUF_CStream_t;
/**! HUF_initCStream():
* Initializes the bitstream.
* @returns 0 or an error code.
*/
static size_t HUF_initCStream(HUF_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
ZSTD_memset(bitC, 0, sizeof(*bitC));
bitC->startPtr = (BYTE*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
return 0;
}
/*! HUF_addBits():
* Adds the symbol stored in HUF_CElt elt to the bitstream.
*
* @param elt The element we're adding. This is a (nbBits, value) pair.
* See the HUF_CStream_t docs for the format.
* @param idx Insert into the bitstream at this idx.
* @param kFast This is a template parameter. If the bitstream is guaranteed
* to have at least 4 unused bits after this call it may be 1,
* otherwise it must be 0. HUF_addBits() is faster when fast is set.
*/
FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
{
assert(idx <= 1);
assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
/* This is efficient on x86-64 with BMI2 because shrx
* only reads the low 6 bits of the register. The compiler
* knows this and elides the mask. When fast is set,
* every operation can use the same value loaded from elt.
*/
bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
/* We only read the low 8 bits of bitC->bitPos[idx] so it
* doesn't matter that the high bits have noise from the value.
*/
bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
/* The last 4-bits of elt are dirty if fast is set,
* so we must not be overwriting bits that have already been
* inserted into the bit container.
*/
#if DEBUGLEVEL >= 1
{
size_t const nbBits = HUF_getNbBits(elt);
size_t const dirtyBits = nbBits == 0 ? 0 : ZSTD_highbit32((U32)nbBits) + 1;
(void)dirtyBits;
/* Middle bits are 0. */
assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
/* We didn't overwrite any bits in the bit container. */
assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
(void)dirtyBits;
}
#endif
}
FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
{
bitC->bitContainer[1] = 0;
bitC->bitPos[1] = 0;
}
/*! HUF_mergeIndex1() :
* Merges the bit container @ index 1 into the bit container @ index 0
* and zeros the bit container @ index 1.
*/
FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
{
assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
bitC->bitContainer[0] |= bitC->bitContainer[1];
bitC->bitPos[0] += bitC->bitPos[1];
assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
}
/*! HUF_flushBits() :
* Flushes the bits in the bit container @ index 0.
*
* @post bitPos will be < 8.
* @param kFast If kFast is set then we must know a-priori that
* the bit container will not overflow.
*/
FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
{
/* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
size_t const nbBits = bitC->bitPos[0] & 0xFF;
size_t const nbBytes = nbBits >> 3;
/* The top nbBits bits of bitContainer are the ones we need. */
size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
/* Mask bitPos to account for the bytes we consumed. */
bitC->bitPos[0] &= 7;
assert(nbBits > 0);
assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitContainer);
bitC->ptr += nbBytes;
assert(!kFast || bitC->ptr <= bitC->endPtr);
if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
/* bitContainer doesn't need to be modified because the leftover
* bits are already the top bitPos bits. And we don't care about
* noise in the lower values.
*/
}
/*! HUF_endMark()
* @returns The Huffman stream end mark: A 1-bit value = 1.
*/
static HUF_CElt HUF_endMark(void)
{
HUF_CElt endMark;
HUF_setNbBits(&endMark, 1);
HUF_setValue(&endMark, 1);
return endMark;
}
/*! HUF_closeCStream() :
* @return Size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
static size_t HUF_closeCStream(HUF_CStream_t* bitC)
{
HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
HUF_flushBits(bitC, /* kFast */ 0);
{
size_t const nbBits = bitC->bitPos[0] & 0xFF;
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (size_t)(bitC->ptr - bitC->startPtr) + (nbBits > 0);
}
}
FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
{
HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
}
FORCE_INLINE_TEMPLATE void
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
const BYTE* ip, size_t srcSize,
const HUF_CElt* ct,
int kUnroll, int kFastFlush, int kLastFast)
{
/* Join to kUnroll */
int n = (int)srcSize;
int rem = n % kUnroll;
if (rem > 0) {
for (; rem > 0; --rem) {
HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
}
HUF_flushBits(bitC, kFastFlush);
}
assert(n % kUnroll == 0);
/* Join to 2 * kUnroll */
if (n % (2 * kUnroll)) {
int u;
for (u = 1; u < kUnroll; ++u) {
HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
}
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
HUF_flushBits(bitC, kFastFlush);
n -= kUnroll;
}
assert(n % (2 * kUnroll) == 0);
for (; n>0; n-= 2 * kUnroll) {
/* Encode kUnroll symbols into the bitstream @ index 0. */
int u;
for (u = 1; u < kUnroll; ++u) {
HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
}
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
HUF_flushBits(bitC, kFastFlush);
/* Encode kUnroll symbols into the bitstream @ index 1.
* This allows us to start filling the bit container
* without any data dependencies.
*/
HUF_zeroIndex1(bitC);
for (u = 1; u < kUnroll; ++u) {