forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimplementation of sieve_algorithm.cpp
85 lines (75 loc) · 1.69 KB
/
implementation of sieve_algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
All submissions for this problem are available.Prime numbers are arranged in a ordered list U, in increasing order. Let S be a sublist of U with a unique property that for every element A belonging to list S, if i denotes the index of A in list U, than i also belongs to list U.
Given N, find sum of first N elements of list S, assuming 1-based indexing.
As the sum can be very large, print the sum modulo 109+7.
Input:
-The first line of the input contains a single integer T denoting the number of test cases.
-Only line of each test case has an integer N .
Output:
For each test case, print a single integer denoting the sum of first N elements of set S modulo 109+7.
Constraints
1=T=10000
1=N=1000*/
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int v[100000]={0};
int su[100000]={0};
int prime[100000];
void calculate()
{
int i,j;
int sum;
v[0]=1;
v[1]=1;
su[0]=0;
for(i=2;i<sqrt(100000);i++)
if(v[i]==false)
for (j = pow(i,2);j<=100000;j+=i)
v[j] = true;
sum=0;
int k=0;
prime[0] = 0;
for(i=1;i<=100000;i++)
{
//king=0;
if(v[i]==0)
{
k++;
prime[k] = i;
//cout<<i;
}
//v[]
}
int lo;
su[0] = 0;
lo=1;
for(i=1;i<=k;i++)
{
if(v[i]==0)
{
sum = sum+prime[i];
su[lo] = sum;
lo++;
}
}
}
int main()
{
std::ios::sync_with_stdio(false);
//cin.tie(0);
int t;
long int n;
calculate();
cin>>t;
// vector<int> v;
while(t--)
{
cin>>n;
// cout<<prime[n];
cout<<su[n]<<endl;
//v.clear();
}
return 0;
}