72
72
X_tar = X(n + 1 : end ,: );
73
73
disp(" ......... Multi-PCA End ........" );
74
74
disp(" ========= Split Target Corpus by Emotional Labels (Train : Test) ==========" );
75
- % for iii = 1:10
76
75
msg = [' According to split=' num2str(split ) ' , the target_train:target_test is ' num2str(10 * split ) ' :' num2str(10 *(1 - split ))];
77
76
disp(msg );
78
77
class_num = max(X_tar_label );
95
94
X_tar_test_label = [X_tar_test_label ;X_tar_label(c_p + 1 : c_e ,: )];
96
95
end
97
96
data = [];
98
- for jj= 1 : 5
99
- % shuffle target_train
100
- X_tt= [X_tar_train ,X_tar_train_label ];
101
- rowrank = randperm(size(X_tt , 1 ));
102
- X1 = X_tt(rowrank ,: );
103
- X_tar_train = X1(: ,1 : size(X_tar_train ,2 ));
104
- X_tar_train_label = X1(: ,size(X_tar_train ,2 )+1 );
105
- % shuffle target_test
106
- X_tt= [X_tar_test ,X_tar_test_label ];
107
- rowrank = randperm(size(X_tt , 1 ));
108
- X1 = X_tt(rowrank ,: );
109
- X_tar_test = X1(: ,1 : size(X_tar_test ,2 ));
110
- X_tar_test_label = X1(: ,size(X_tar_test ,2 )+1 );
111
- disp(" ......... Split End ........" );
112
- disp(" ========= Multi-Disciminant Subspace Alihnment (MDSA) START ==========" );
113
- ll = 0 ;
114
- for g11= [1 ]
115
- ll= ll + 1 ;
97
+ for jj= 1 : 10
98
+ % shuffle target_train
99
+ X_tt= [X_tar_train ,X_tar_train_label ];
100
+ rowrank = randperm(size(X_tt , 1 ));
101
+ X1 = X_tt(rowrank ,: );
102
+ X_tar_train = X1(: ,1 : size(X_tar_train ,2 ));
103
+ X_tar_train_label = X1(: ,size(X_tar_train ,2 )+1 );
104
+ % shuffle target_test
105
+ X_tt= [X_tar_test ,X_tar_test_label ];
106
+ rowrank = randperm(size(X_tt , 1 ));
107
+ X1 = X_tt(rowrank ,: );
108
+ X_tar_test = X1(: ,1 : size(X_tar_test ,2 ));
109
+ X_tar_test_label = X1(: ,size(X_tar_test ,2 )+1 );
110
+ disp(" ......... Split End ........" );
111
+ disp(" ========= Multi-Disciminant Subspace Alihnment (MDSA) START ==========" );
116
112
options = [];
117
113
options.beta = 8 * 10 ^ 3 ;% 1~8
118
114
options.gamma = 1.5 ;%
138
134
disp(" Final test acc:" );
139
135
disp(acc(1 ));
140
136
myacc(ll ) = acc(1 );
141
- end
142
- data(jj ) = acc(1 );
137
+ data(jj ) = acc(1 );
143
138
end
144
139
b = mean(data );
145
140
disp(b );
146
141
a = std(data ,1 );
147
142
disp(a );
148
- % end
149
- % Zss = [];
150
- % lll = cell(1,num_src_domain);
151
- % for i = 1:num_src_domain
152
- % mm = P{i}*X_src{i}';
153
- % mm=normalization(mm,1);
154
- % Zss = [Zss,mm(:,1:300)];
155
- % lll{i} = X_src_label{i}(1:300,:);
156
- % trials = [trials;300];
157
- % end
158
- % Zss = Zss*diag(sparse(1./sqrt(sum(Zss.^2))));
159
- %
160
- % X =[Zss,Zt];
161
- % % X=normalization(X,1);
162
- % %mahalanobis euclidean
163
- % Y = tsne(X','Algorithm','exact','Distance','cosine');%,'NumPCAComponents',10
164
- % Ys1=Y(1:trials(1),:);
165
- % Ys2=Y(trials(1)+1:trials(1)+trials(2),:);
166
- % Ys3=Y(trials(1)+trials(2)+1:trials(1)+trials(2)+trials(3),:);
167
- % Ys4=Y(trials(1)+trials(2)+trials(3)+1:trials(1)+trials(2)+trials(3)+trials(4),:);
168
- % Y2=Y(trials(1)+trials(2)+trials(3)+1:end,:);
169
- % figure;
170
- % %subplot(2,3,1);
171
- % % axis([-50,50,-50,50]);
172
- %
173
- % scatter(Ys1(lll{1}==1,1),Ys1(lll{1}==1,2),'*','r','LineWidth',1);
174
- % hold on
175
- % scatter(Ys1(lll{1}==2,1),Ys1(lll{1}==2,2),'*','b','LineWidth',1);
176
- % hold on;
177
- % scatter(Ys1(lll{1}==3,1),Ys1(lll{1}==3,2),'*','g','LineWidth',1);
178
- % hold on;
179
- % scatter(Ys1(lll{1}==4,1),Ys1(lll{1}==4,2),'*','y','LineWidth',1);
180
- % hold on;
181
- %
182
- % scatter(Ys2(lll{2}==1,1),Ys2(lll{2}==1,2),'+','r','LineWidth',1);
183
- % hold on
184
- % scatter(Ys2(lll{2}==2,1),Ys2(lll{2}==2,2),'+','b','LineWidth',1);
185
- % hold on;
186
- % scatter(Ys2(lll{2}==3,1),Ys2(lll{2}==3,2),'+','g','LineWidth',1);
187
- % hold on;
188
- % scatter(Ys2(lll{2}==4,1),Ys2(lll{2}==4,2),'+','y','LineWidth',1);
189
- % hold on;
190
- %
191
- % scatter(Ys3(lll{3}==1,1),Ys3(lll{3}==1,2),'o','r','LineWidth',1);
192
- % hold on
193
- % scatter(Ys3(lll{3}==2,1),Ys3(lll{3}==2,2),'o','b','LineWidth',1);
194
- % hold on;
195
- % scatter(Ys3(lll{3}==3,1),Ys3(lll{3}==3,2),'o','g','LineWidth',1);
196
- % hold on;
197
- % scatter(Ys3(lll{3}==4,1),Ys3(lll{3}==4,2),'o','y','LineWidth',1);
198
- % hold on;
199
- %
200
- %
201
- % scatter(Ys4(lll{4}==1,1),Ys4(lll{4}==1,2),'^','r','LineWidth',1);
202
- % hold on
203
- % scatter(Ys4(lll{4}==2,1),Ys4(lll{4}==2,2),'^','b','LineWidth',1);
204
- % hold on;
205
- % scatter(Ys4(lll{4}==3,1),Ys4(lll{4}==3,2),'^','g','LineWidth',1);
206
- % hold on;
207
- % scatter(Ys4(lll{4}==4,1),Ys4(lll{4}==4,2),'^','y','LineWidth',1);
208
- % hold on;
209
- %
210
- %
211
- % scatter(Y2(X_tar_test_label==1,1),Y2(X_tar_test_label==1,2),'d','r','LineWidth',1);
212
- % hold on
213
- % scatter(Y2(X_tar_test_label==2,1),Y2(X_tar_test_label==2,2),'d','b','LineWidth',1);
214
- % hold on;
215
- % scatter(Y2(X_tar_test_label==3,1),Y2(X_tar_test_label==3,2),'d','g','LineWidth',1);
216
- % hold on;
217
- % scatter(Y2(X_tar_test_label==4,1),Y2(X_tar_test_label==4,2),'d','y','LineWidth',1);
218
- % hold on;
219
-
220
- % box on;
221
- % view(-20,20);
222
-
223
-
224
-
225
- % act=Zt_label;
226
- % act1=act';
227
- % det=pred_label;
228
- % det1=det';
229
- % confusion_matrix1(act1,det1);
0 commit comments