-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
executable file
·229 lines (184 loc) · 6.84 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding: utf-8 -*-
import timeit
import numpy as np
import networkx as nx
def test_random():
t1 = timeit.Timer('[random.randint(0,1000) for r in xrange(10000)]', 'import random') # v1
t2 = timeit.Timer('random.sample(range(10000), 10000)', 'import random') # v2
t3 = timeit.Timer('nprnd.randint(1000, size=10000)', 'import numpy.random as nprnd') # v3
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
print t3.timeit(1000)/1000
def test_sum():
t1 = timeit.Timer('sum(ints)', 'import numpy as np;ints = np.random.randint(1000, size=100)')
t2 = timeit.Timer('ints.sum()', 'import numpy as np;ints = np.random.randint(1000, size=100)')
ints = np.random.randint(1000, size=100)
print(sum(ints))
print(ints.sum())
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
def test_len():
t1 = timeit.Timer('len(ints)', 'import numpy as np;ints = np.random.randint(1000, size=10000)')
t2 = timeit.Timer('ints.size', 'import numpy as np;ints = np.random.randint(1000, size=10000)')
ints = np.random.randint(1000, size=100)
print(len(ints))
print(ints.size)
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
def test_zeros():
t1 = timeit.Timer('np.zeros(10000)', 'import numpy as np')
t2 = timeit.Timer('a=np.empty(10000);a.fill(0)', 'import numpy as np')
a = np.zeros(10000, dtype=np.double)
b = np.empty(10000)
b.fill(0)
print type(a[0]), type(b[0])
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
def test_ref(a_list, b_list):
a_list = b_list / 2
print a_list, b_list
def test_read_graph_data():
file_path = '/media/shaodan/Work/ShaoDan/DataSets/ASU/Douban-dataset/data/edges.csv'
douban = nx.read_edgelist(file_path, delimiter=',', nodetype=int, data=False)
print(nx.number_of_nodes(douban), nx.number_of_edges(douban))
def test_empty_list(*args):
print 1
if not args:
print 2
def test_if_is():
t1 = timeit.Timer('[i for i in xrange(10000) if i == True]')
t2 = timeit.Timer('[i for i in xrange(10000) if i is True]')
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
def test_count_zero():
""" 2018.3.14 numpy 1.12.1 for np.zeros
1.02198876139e-05
2.55668244035e-06
3.2599031532e-06
# 2018.4.5 numpy 1.13.3 for np.ones
5.54704666138e-06
4.03499603271e-06
2.2931098938e-06
# 2018.4.5 numpy 1.13.3 for np.random.randint
7.39693641663e-06
3.05700302124e-06
3.17907333374e-06
"""
# setup = 'import numpy as np;strategy=np.random.randint(2, size=1000,dtype=int);'
setup = 'import numpy as np;strategy=np.ones(1000,dtype=int);'
t1 = timeit.Timer('(strategy==0).sum()', setup)
t2 = timeit.Timer('len(strategy)-np.count_nonzero(strategy)', setup)
t3 = timeit.Timer('np.count_nonzero(strategy==0)', setup)
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
print t3.timeit(1000)/1000
def test_np_array_dot():
setup = "import numpy as np;N=1000;s=np.random.randint(2,size=N);d=np.ones(N);f=np.zeros(N);"
t1 = timeit.Timer("f+=s*(d+1)", setup)
t2 = timeit.Timer("for n in range(N):f[n]+=(d[n]+1) if s[n] else 0", setup)
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
def test_attr_addressing():
setup1 = 'import networkx as nx;g=nx.Graph();g.fitness=range(10000)'
setup2 = 'fitness=range(10000);'
t1 = timeit.Timer('[g.fitness[i] for i in xrange(10000)]', setup1)
t2 = timeit.Timer('[fitness[i] for i in xrange(10000)]', setup2)
print t1.timeit(1000)/1000
print t2.timeit(1000)/1000
def test_edge_size():
# 这里测试错误原来用的是len(P.edges()),实际上nx提供了P.size()函数来计算edge的数目,比自己写的还快
# networkx v2 之后修改了P.edges, len(P.edges)反而最快了
setup = 'import networkx as nx;P=nx.watts_strogatz_graph(2000, 100, 0.3);'
t1 = timeit.Timer('sum([len(item.values()) for item in P._adj.values()]) / 2', setup)
t2 = timeit.Timer('len(P.edges', setup)
t3 = timeit.Timer('P.size()', setup)
print t1.timeit(10)/10
print t2.timeit(10)/10
print t3.timeit(10)/10
def test_random_edge():
""" 2018.3.10 numpy 1.12.1 networkx 2.0
avg_k 10 100
t1 0.0024 0.00019
t2 0.0013 0.0014
"""
setup = 'import networkx as nx;from population import Population;G=nx.watts_strogatz_graph(1000, 5, 0.3);' \
'P=Population(G); print P.size() / float(len(P));'
t1 = timeit.Timer('P.random_edge()', setup)
t2 = timeit.Timer('P.random_edge2()', setup)
print t1.timeit(10)/10
print t2.timeit(10)/10
def test_degree_view():
""" 2018.3.17 numpy 1.12.1 networkx 2.0
3.68335605813e-06
1.47562313908e-05
6.84214747637e-08
2.35673968634e-07
"""
setup = 'import networkx as nx;import population as pp;G=nx.watts_strogatz_graph(2000, 100, 0.3);' \
'P=pp.Population(G);'
t1 = timeit.Timer('a=G.degree', setup)
t2 = timeit.Timer('a=G.degree([1,2,3,4,5])', setup)
t3 = timeit.Timer('a=P.degree_cache', setup)
t4 = timeit.Timer('a=P.degree_cache[1:6]', setup)
print t1.timeit(100)/100
print t2.timeit(100)/100
print t3.timeit(100)/100
print t4.timeit(100)/100
def test_pgg_play():
""" 2018.3.14 numpy 1.12.1 networkx 2.0
0.123623046329
0.117357957969
0.146285075034
"""
setup = 'import networkx as nx;import population as pp;import game;G=nx.watts_strogatz_graph(2000, 100, 0.3);' \
'P=pp.Population(G);g=game.PGG(3).bind(P);g.play()'
t1 = timeit.Timer('g.entire_play_old()', setup)
t2 = timeit.Timer('g.entire_play()', setup)
# t3 = timeit.Timer('g.entire_play2()', setup) # 先统计Nc,结果最慢...
print t1.timeit(10)/10
print t2.timeit(10)/10
# print t3.timeit(10)/10
def test_view():
# G = nx.random_graphs.watts_strogatz_graph(2000, 100, 0.3)
G = nx.random_graphs.barabasi_albert_graph(10, 2, 1)
print G.degree
print G.degree[1]
print G.degree[2]
import population
P = population.Population(G)
print P.degree
P.add_edge(13, 1)
print P.degree[1]
print P.degree[2]
def test_degree_distribution():
import population
G = nx.barabasi_albert_graph(10000, 3)
p = population.Population(G)
# p.degree_distribution()
p.degree_distribution_binned()
def test_ordered_graph():
G = nx.OrderedGraph()
# test_attr_addressing()
# test_edge_size()
# test_random_edge()
# test_degree_view()
# test_view()
# test_degree_distribution()
# test_ordered_graph()
test_pgg_play()
# test_random()
# test_sum
# test_len()
# test_zeros()
# test_read_graph_data()
# test_empty_list()
# test_empty_list([3])
# test_empty_list(3)
# test_if_is()
# test_count_zero()
# test_np_array_dot()
# a_list = np.ones(10, dtype=int)
# b_list = np.random.randint(10, size=10)
# print a_list, b_list
# test_ref(a_list, b_list)
# print a_list, b_list