diff --git a/python/sglang/srt/models/minicpm.py b/python/sglang/srt/models/minicpm.py new file mode 100644 index 00000000000..072bf99ab19 --- /dev/null +++ b/python/sglang/srt/models/minicpm.py @@ -0,0 +1,373 @@ +"""Inference-only MiniCPM model compatible with HuggingFace weights.""" + +import math +from typing import Any, Dict, Iterable, Optional, Tuple + +import torch +from torch import nn + +from vllm.config import CacheConfig +from vllm.distributed import get_tensor_model_parallel_world_size + +from vllm.model_executor.layers.activation import SiluAndMul + +from vllm.model_executor.layers.layernorm import RMSNorm +from vllm.model_executor.layers.linear import ( + MergedColumnParallelLinear, + QKVParallelLinear, + RowParallelLinear, +) +from vllm.model_executor.layers.quantization.base_config import QuantizationConfig +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.layers.vocab_parallel_embedding import ( + ParallelLMHead, + VocabParallelEmbedding, +) +from vllm.model_executor.model_loader.weight_utils import default_weight_loader + +from sglang.srt.layers.logits_processor import LogitsProcessor +from sglang.srt.layers.radix_attention import RadixAttention +from sglang.srt.managers.controller.model_runner import InputMetadata + + +class MiniCPMMLP(nn.Module): + + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + quant_config: Optional[QuantizationConfig] = None, + ) -> None: + super().__init__() + self.gate_up_proj = MergedColumnParallelLinear( + hidden_size, + [intermediate_size] * 2, + bias=False, + quant_config=quant_config, + ) + self.down_proj = RowParallelLinear( + intermediate_size, + hidden_size, + bias=False, + quant_config=quant_config, + ) + if hidden_act != "silu": + raise ValueError( + f"Unsupported activation: {hidden_act}. " + "Only silu is supported for now." + ) + self.act_fn = SiluAndMul() + + def forward(self, x): + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class MiniCPMAttention(nn.Module): + + def __init__( + self, + hidden_size: int, + num_heads: int, + num_kv_heads: int, + layer_id: int = 0, + rope_theta: float = 10000, + rope_scaling: Optional[Dict[str, Any]] = None, + max_position_embeddings: int = 8192, + quant_config: Optional[QuantizationConfig] = None, + ) -> None: + super().__init__() + self.hidden_size = hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = num_heads + assert self.total_num_heads % tp_size == 0 + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = num_kv_heads + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + self.head_dim = hidden_size // self.total_num_heads + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_kv_heads * self.head_dim + self.scaling = self.head_dim**-0.5 + self.rope_theta = rope_theta + self.max_position_embeddings = max_position_embeddings + + self.qkv_proj = QKVParallelLinear( + hidden_size, + self.head_dim, + self.total_num_heads, + self.total_num_kv_heads, + bias=False, + quant_config=quant_config, + ) + self.o_proj = RowParallelLinear( + self.total_num_heads * self.head_dim, + hidden_size, + bias=False, + quant_config=quant_config, + ) + + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=max_position_embeddings, + base=rope_theta, + rope_scaling=rope_scaling, + ) + # set rope as fp32 instead of bf16 + self.rotary_emb.cos_sin_cache = self.rotary_emb._compute_cos_sin_cache() + self.attn = RadixAttention( + self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads, + layer_id=layer_id, + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + input_metadata: InputMetadata, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + orig_dtype = q.dtype + q, k = q.float(), k.float() + q, k = self.rotary_emb(positions, q, k) + q, k = q.to(orig_dtype), k.to(orig_dtype) + attn_output = self.attn(q, k, v, input_metadata) + output, _ = self.o_proj(attn_output) + return output + + +class MiniCPMDecoderLayer(nn.Module): + + def __init__( + self, + config, + layer_id: int = 0, + quant_config: Optional[QuantizationConfig] = None, + ) -> None: + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + rope_theta = getattr(config, "rope_theta", 10000) + rope_scaling = getattr(config, "rope_scaling", None) + max_position_embeddings = getattr(config, "max_position_embeddings", 8192) + self.self_attn = MiniCPMAttention( + hidden_size=self.hidden_size, + num_heads=config.num_attention_heads, + num_kv_heads=config.num_key_value_heads, + layer_id=layer_id, + rope_theta=rope_theta, + rope_scaling=rope_scaling, + max_position_embeddings=max_position_embeddings, + quant_config=quant_config, + ) + self.mlp = MiniCPMMLP( + hidden_size=self.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + quant_config=quant_config, + ) + self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + input_metadata: InputMetadata, + residual: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Self Attention + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + hidden_states = self.self_attn( + positions=positions, + hidden_states=hidden_states, + input_metadata=input_metadata, + ) + hidden_states = residual + hidden_states * ( + self.config.scale_depth / math.sqrt(self.config.num_hidden_layers) + ) + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states * ( + self.config.scale_depth / math.sqrt(self.config.num_hidden_layers) + ) + + return hidden_states, None + + +class MiniCPMModel(nn.Module): + + def __init__( + self, + config, + quant_config: Optional[QuantizationConfig] = None, + ) -> None: + super().__init__() + self.config = config + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + self.embed_tokens = VocabParallelEmbedding( + self.vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + ) + self.layers = nn.ModuleList( + [ + MiniCPMDecoderLayer(config, i, quant_config=quant_config) + for i in range(config.num_hidden_layers) + ] + ) + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + input_metadata: InputMetadata, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + if input_embeds is None: + hidden_states = self.embed_tokens(input_ids) * self.config.scale_emb + else: + hidden_states = input_embeds + residual = None + + for i in range(len(self.layers)): + layer = self.layers[i] + hidden_states, residual = layer( + positions, + hidden_states, + input_metadata, + residual, + ) + hidden_states = self.norm(hidden_states) + return hidden_states + + +class MiniCPMForCausalLM(nn.Module): + def __init__( + self, + config, + quant_config: Optional[QuantizationConfig] = None, + cache_config: Optional[CacheConfig] = None, + ) -> None: + super().__init__() + self.config = config + + self.num_experts = getattr(self.config, "num_experts", 0) + self.quant_config = quant_config + self.model = MiniCPMModel(config, quant_config=quant_config) + # self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) + if not self.config.tie_word_embeddings: + self.lm_head = ParallelLMHead( + config.vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + ) + + self.scale_width = self.config.hidden_size / self.config.dim_model_base + + self.logits_processor = LogitsProcessor(config) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + input_metadata: InputMetadata, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + if input_embeds is not None: + input_embeds = input_embeds * self.config.scale_emb + hidden_states = self.model(input_ids, positions, input_metadata, input_embeds) + hidden_states = hidden_states / self.scale_width + if self.config.tie_word_embeddings: + lm_head_weight = self.model.embed_tokens.weight + else: + lm_head_weight = self.lm_head.weight + return self.logits_processor( + input_ids, hidden_states, lm_head_weight, input_metadata + ) + + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ("gate_up_proj", "gate_proj", 0), + ("gate_up_proj", "up_proj", 1), + ] + expert_params_mapping = [ + # (param_name, weight_name, expert_id) + ( + "ws" if weight_name in ["w1", "w3"] else "w2s", + f"experts.{expert_id}.{weight_name}.weight", + expert_id, + ) + for expert_id in range(self.num_experts) + for weight_name in ["w1", "w2", "w3"] + ] + params_dict = dict(self.named_parameters()) + for name, loaded_weight in weights: + if "rotary_emb.inv_freq" in name: + continue + if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: + # Models trained using ColossalAI may include these tensors in + # the checkpoint. Skip them. + continue + + for param_name, weight_name, shard_id in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + for param_name, weight_name, expert_id in expert_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader( + param, loaded_weight, weight_name, expert_id=expert_id + ) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = getattr( + param, "weight_loader", default_weight_loader + ) + weight_loader(param, loaded_weight) + + +EntryClass = MiniCPMForCausalLM