-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
309 lines (238 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
import albumentations as A
from albumentations.pytorch import ToTensorV2
from torch.utils.data import DataLoader
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
from model import Model
from dataset import PlantDataset
from loss import CrossEntropy
def train_one_fold(i_fold, model, criterion, optimizer, N_EPOCHS, dataloader_train, dataloader_valid, device):
"""
Train one fold. Data has already been split
:param i_fold: index of the current fold
:param model: the classifier
:param criterion: criterion to optimize
:param optimizer: optimizer
:param dataloader_train: training data for the current fold
:param dataloader_valid: validation data for the current fold
:return:
"""
train_fold_results = []
for epoch in range(N_EPOCHS):
print(f' Epoch {epoch + 1}/{N_EPOCHS}')
print(' ' + ('-' * 20))
model.train()
tr_loss = 0
# iterate over training data, batch by batch
for step, batch in enumerate(dataloader_train):
images = batch[0]
labels = batch[1]
# put the data into the model
images = images.to(device, dtype=torch.float)
labels = labels.to(device, dtype=torch.float)
# get model's output, calculate the loss
outputs = model(images)
loss = criterion(outputs, labels.squeeze(-1))
loss.backward()
# store the loss
tr_loss += loss.item()
# backpropagation
optimizer.step()
optimizer.zero_grad()
# Validate
model.eval()
val_loss = 0
val_preds = None
val_labels = None
for step, batch in enumerate(dataloader_valid):
images = batch[0]
labels = batch[1]
# Store the labels
if val_labels is None:
val_labels = labels.clone().squeeze(-1)
else:
val_labels = torch.cat((val_labels, labels.squeeze(-1)), dim=0)
images = images.to(device, dtype=torch.float)
labels = labels.to(device, dtype=torch.float)
# don't store gradient this time!
with torch.no_grad():
outputs = model(images)
loss = criterion(outputs, labels.squeeze(-1))
val_loss += loss.item()
preds = torch.softmax(outputs, dim=1).data.cpu()
if val_preds is None:
val_preds = preds
else:
val_preds = torch.cat([val_preds, preds], dim=0)
train_fold_results.append({
'fold': i_fold,
'epoch': epoch,
'train_loss': tr_loss / len(dataloader_train),
'valid_loss': val_loss / len(dataloader_valid),
'valid_score': roc_auc_score(val_labels, val_preds, average='macro'),
})
return val_preds, train_fold_results
def training_loop(N_FOLDS=5, N_EPOCHS=10, BATCH_SIZE=64, transforms_train=None, transforms_valid=None, data_dir='data/',
device=torch.device('cuda:0')):
"""
Function training the model.
It uses cross-validation to train separate models and predicts on test set.
:param N_FOLDS: Number of cross-validation splits
:param N_EPOCHS: Number of training epochs at each split
:param BATCH_SIZE: Batch size
:param transforms_train: Transformations of images that should be applied on training set
:param transforms_valid: Transformations of images that should be applied on validation / test set
:param data_dir: Path to directory with data
:param device: Device to use, by default it uses cuda gpu
:return: training results
"""
# Read training data, get the labels to split the folds appropriately (the classes are imbalanced)
train_df = pd.read_csv(data_dir + 'train.csv')
train_labels = train_df.iloc[:, 1:].values
train_y = train_labels[:, 2] + train_labels[:, 3] * 2 + train_labels[:, 1] * 3
folds = StratifiedKFold(n_splits=N_FOLDS, shuffle=True, random_state=42)
oof_preds = np.zeros((train_df.shape[0], 4))
train_results = []
# Test dataloader
submission_df = pd.read_csv(data_dir + 'sample_submission.csv')
submission_df.iloc[:, 1:] = 0
dataset_test = PlantDataset(df=submission_df, data_dir=data_dir, transforms=transforms_valid)
dataloader_test = DataLoader(dataset_test, batch_size=BATCH_SIZE, num_workers=4, shuffle=False)
submissions = None
# Train - iterate over folds
for i_fold, (train_idx, valid_idx) in enumerate(folds.split(train_df, train_y)):
print(f'Fold {i_fold+1} / {N_FOLDS}')
# get validation and training sets for the fold
valid = train_df.iloc[valid_idx]
valid.reset_index(drop=True, inplace=True)
train = train_df.iloc[train_idx]
train.reset_index(drop=True, inplace=True)
dataset_valid = PlantDataset(df=valid, data_dir=data_dir, transforms=transforms_valid)
dataset_train = PlantDataset(df=train, data_dir=data_dir, transforms=transforms_train)
dataloader_valid = DataLoader(dataset_valid, batch_size=BATCH_SIZE, num_workers=4, shuffle=True)
dataloader_train = DataLoader(dataset_train, batch_size=BATCH_SIZE, num_workers=4, shuffle=False)
# initialize a new model, send it to GPU
model = Model()
model.to(device)
# criterion, optimizer, learning rate
criterion = CrossEntropy()
optimizer = optim.Adam(model.parameters(), lr=5e-5)
# train on folds, validate on oof instances
# get validation predictions and results
val_preds, train_fold_results = train_one_fold(i_fold, model, criterion, optimizer, N_EPOCHS,
dataloader_train, dataloader_valid, device)
oof_preds[valid_idx, :] = val_preds.numpy()
train_results = train_results + train_fold_results
# Evaluate on test set
model.eval()
test_preds = None
for step, batch in enumerate(dataloader_test):
# Get the images
images = batch[0]
images = images.to(device, dtype=torch.float)
# Predict their class
with torch.no_grad():
outputs = model(images)
if test_preds is None:
test_preds = outputs.data.cpu()
else:
test_preds = torch.cat([test_preds, outputs.data.cpu()], dim=0)
# Save predictions per fold
submission_df[['healthy', 'multiple_diseases', 'rust', 'scab']] = torch.softmax(test_preds, dim=1)
submission_df.to_csv(f'submissions/submission_fold_{i_fold}.csv', index=False)
# Each model predicts on test set, the predictions are averaged
if submissions is None:
submissions = test_preds / N_FOLDS
else:
submissions += test_preds / N_FOLDS
print(f"Validation score: {round(roc_auc_score(train_labels, oof_preds, average='macro'), 3)}")
# All models trained
# Aggregate the predictions, get probabilities
submission_df[['healthy', 'multiple_diseases', 'rust', 'scab']] = torch.softmax(submissions, dim=1)
submission_df.to_csv('submissions/Plants_submission.csv', index=False)
return train_results
def training_loop_single(N_EPOCHS, BATCH_SIZE, transforms_train=None, transforms_valid=None, data_dir='data/',
device=torch.device('cuda:0')):
"""
Split the data to training and validation set and train one model.
:param N_EPOCHS: Number of training epochs at each split
:param BATCH_SIZE: Batch size
:param transforms_train: Transformations of images that should be applied on training set
:param transforms_valid: Transformations of images that should be applied on validation / test set
:param data_dir: Path to directory with data
:param device: Device to use, by default it uses cuda gpu
:return: trained model, training results
"""
# Read DataFrame
df = pd.read_csv(data_dir + 'train.csv')
# Train - validation split
n = int(0.8 * df.shape[0])
np.random.seed(42)
train_idx = np.random.choice(df.index, n)
train_df = df.loc[train_idx]
train_df.reset_index(drop=True, inplace=True)
valid_idx = np.setdiff1d(df.index, train_idx)
valid_df = df.loc[valid_idx]
valid_df.reset_index(drop=True, inplace=True)
# Prepare Datasets and DataLoaders
train_dataset = PlantDataset(df=train_df, data_dir=data_dir, transforms=transforms_train)
valid_dataset = PlantDataset(df=valid_df, data_dir=data_dir, transforms=transforms_valid)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, num_workers=4, shuffle=True)
valid_dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, num_workers=4, shuffle=False)
# initialize model, optimzer and loss
model = Model()
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=5e-5)
criterion = CrossEntropy()
train_results = []
for i in range(N_EPOCHS):
print(f'Epoch: {i+1} / {N_EPOCHS}')
# Train
model.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
images = batch[0]
labels = batch[1]
images = images.to(device, dtype=torch.float)
labels = labels.to(device, dtype=torch.float)
outputs = model(images)
loss = criterion(outputs, labels.squeeze(-1))
train_loss += loss.item()
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Validate
model.eval()
valid_loss = 0.0
valid_labels = None
valid_preds = None
for step, batch in enumerate(valid_dataloader):
images = batch[0]
labels = batch[1]
images = images.to(device, dtype=torch.float)
labels = labels.to(device, dtype=torch.float)
if valid_labels is None:
valid_labels = labels.clone().squeeze(-1)
else:
valid_labels = torch.cat([valid_labels, labels.squeeze(-1)], dim=0)
with torch.no_grad():
outputs = model(images)
loss = criterion(outputs, labels.squeeze(-1))
valid_loss += loss.item()
preds = torch.softmax(outputs, dim=1).data.cpu()
if valid_preds is None:
valid_preds = preds
else:
valid_preds = torch.cat([valid_preds, preds], dim=0)
train_results.append({
'epoch': i,
'train_loss': train_loss / len(train_dataloader),
'valid_loss': valid_loss / len(valid_dataloader),
'valid_score': roc_auc_score(valid_labels.data.cpu(), valid_preds.data.cpu(), average='macro')
})
print(f'Validation score: {roc_auc_score(valid_labels.data.cpu(), valid_preds.data.cpu(), average="macro")}')
return model, train_results