-
Notifications
You must be signed in to change notification settings - Fork 665
/
test_pre_process_video.m
117 lines (73 loc) · 3.44 KB
/
test_pre_process_video.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
clc;clear;
name='sample_video/input/'; %input file location
back_name='sample_video/teaser_back.png'; %captured background image
img_list=dir([name '*_img.png']);
%% bias-gain adjustment
ref=double(imread(back_name))/255;
bias=zeros(length(img_list),3); gain=ones(length(img_list),3);
for i=1:30:length(img_list)
img=double(imread([name img_list(i).name]))/255;
mask=double(imread([name strrep(img_list(i).name,'_img','_masksDL')]))/255;
for t=1:10
mask = imdilate(mask,[0 1 0; 1 1 1; 0 1 0]);
end
mask1=mask;
for t=1:300
mask1 = imdilate(mask1,[0 1 0; 1 1 1; 0 1 0]);
end
[~,biasR,gainR]=bias_gain_corr(img(:,:,1),ref(:,:,1),mask1-mask);
[~,biasG,gainG]=bias_gain_corr(img(:,:,2),ref(:,:,2),mask1-mask);
[~,biasB,gainB]=bias_gain_corr(img(:,:,2),ref(:,:,3),mask1-mask);
bias(i,1)=biasR; bias(i,2)=biasG; bias(i,3)=biasB;
gain(i,1)=gainR; gain(i,2)=gainG; gain(i,3)=gainB;
end
B=median(bias,1);
G=median(gain,1);
ref_tran(:,:,1)=ref(:,:,1)*G(1)+B(1);
ref_tran(:,:,2)=ref(:,:,2)*G(2)+B(2);
ref_tran(:,:,3)=ref(:,:,3)*G(3)+B(3);
%% alignment %%
for i=1:length(img_list)
img=double(imread([name img_list(i).name]))/255;
mask=double(imread([name strrep(img_list(i).name,'_img','_masksDL')]))/255;
[ref_tr,A]=align_tr_projective(img,ref_tran,mask); ref_tr=double(ref_tr)/255;
imwrite(ref_tr,[name strrep(img_list(i).name,'_img','_back')]);
end
%% functions %%
function [cap_tran,biasR,gainR]=bias_gain_corr(orgR,capR,cap_mask)
cap_mask(cap_mask~=1)=0;
xR=capR(logical(cap_mask));
yR=orgR(logical(cap_mask));
gainR=nanstd(yR)/nanstd(xR);
biasR=nanmean(yR)-gainR*nanmean(xR);
cap_tran=capR*gainR+biasR;
end
function [recovered,A] = align_tr_projective(thumb0001_col,thumb0001_back_col,thumb0001_maskDL)
thumb0001_col=uint8(255*thumb0001_col);
thumb0001_back_col=uint8(255*thumb0001_back_col);
thumb0001_maskDL=uint8(255*thumb0001_maskDL);
mask=double(thumb0001_maskDL)==255;
thumb0001=rgb2gray(thumb0001_col); thumb0001_back=rgb2gray(thumb0001_back_col);
ptsOriginal = detectSURFFeatures(thumb0001);
ptsDistorted = detectSURFFeatures(thumb0001_back);
[featuresOriginal, validPtsOriginal] = extractFeatures(thumb0001, ptsOriginal);
[featuresDistorted, validPtsDistorted] = extractFeatures(thumb0001_back, ptsDistorted);
indexPairs = matchFeatures(featuresOriginal, featuresDistorted);
matchedOriginal = validPtsOriginal(indexPairs(:,1));
matchedDistorted = validPtsDistorted(indexPairs(:,2));
% figure;
% showMatchedFeatures(thumb0001,thumb0001_back,matchedOriginal,matchedDistorted);
% title('Putatively matched points (including outliers)');
[tform, inlierDistorted, inlierOriginal] = estimateGeometricTransform(...
matchedDistorted, matchedOriginal, 'projective');
% figure;
% showMatchedFeatures(thumb0001,thumb0001_back,inlierOriginal,inlierDistorted);
% title('Matching points (inliers only)');
% legend('ptsOriginal','ptsDistorted');
outputView = imref2d(size(thumb0001));
recovered = imwarp(thumb0001_back_col,tform,'OutputView',outputView);
% figure, imagesc(sum(abs(double(thumb0001_col)-double(recovered)),3)/3);
mask=sum(double(recovered),3)==0;
recovered(repmat(mask,[1 1 3]))=thumb0001_col(repmat(mask,[1 1 3]));
recovered(repmat(mask&(double(thumb0001_maskDL)/255),[1 1 3]))=thumb0001_back_col(repmat(mask&(double(thumb0001_maskDL)/255),[1 1 3]));
end