From ece80c64d8bb3bd2de6b35423f568c31cbc7758d Mon Sep 17 00:00:00 2001 From: Amrita Goswami Date: Sat, 23 Mar 2024 18:36:41 +0000 Subject: [PATCH] InertialModel: Completed implementation We have implemented the Inertial model (more specifically the activity driven inertial model). The example added runs and produces output. TODO: unit test the shit of this! Co-authored-by: Moritz Sallermann --- examples/ActivityDrivenInertial/conf.toml | 34 ++++ include/config_parser.hpp | 9 +- include/model_factory.hpp | 17 ++ include/models/InertialModel.hpp | 2 +- include/simulation.hpp | 4 + src/config_parser.cpp | 181 +++++++++++++--------- src/main.cpp | 6 + src/models/InertialModel.cpp | 3 +- 8 files changed, 179 insertions(+), 77 deletions(-) create mode 100644 examples/ActivityDrivenInertial/conf.toml diff --git a/examples/ActivityDrivenInertial/conf.toml b/examples/ActivityDrivenInertial/conf.toml new file mode 100644 index 0000000..383ba76 --- /dev/null +++ b/examples/ActivityDrivenInertial/conf.toml @@ -0,0 +1,34 @@ +[simulation] +model = "ActivityDrivenInertial" +# rng_seed = 120 # Leaving this empty will pick a random seed + +[io] +n_output_network = 20 # Write the network every 20 iterations +n_output_agents = 1 # Write the opinions of agents after every iteration +print_progress = true # Print the iteration time ; if not set, then does not print + +[model] +max_iterations = 500 # If not set, max iterations is infinite + +[ActivityDrivenInertial] +dt = 0.01 # Timestep for the integration of the coupled ODEs +m = 10 # Number of agents contacted, when the agent is active +eps = 0.01 # Minimum activity epsilon; a_i belongs to [epsilon,1] +gamma = 2.1 # Exponent of activity power law distribution of activities +reciprocity = 0.65 # probability that when agent i contacts j via weighted reservoir sampling, j also sends feedback to i. So every agent can have more than m incoming connections +homophily = 1.0 # aka beta. if zero, agents pick their interaction partners at random +alpha = 3.0 # Controversialness of the issue, must be greater than 0. +K = 2.0 +mean_activities = false # Use the mean value of the powerlaw distribution for the activities of all agents +mean_weights = false # Use the meanfield approximation of the network edges + +reluctances = true # Assigns a "reluctance" (m_i) to each agent. By default; false and every agent has a reluctance of 1 +reluctance_mean = 1.0 # Mean of distribution before drawing from a truncated normal distribution (default set to 1.0) +reluctance_sigma = 0.25 # Width of normal distribution (before truncating) +reluctance_eps = 0.01 # Minimum such that the normal distribution is truncated at this value + +friction_coefficient = 1.0 # Friction coefficient, making agents tend to go to rest without acceleration + +[network] +number_of_agents = 1000 +connections_per_agent = 10 diff --git a/include/config_parser.hpp b/include/config_parser.hpp index 6099a3f..326dc59 100644 --- a/include/config_parser.hpp +++ b/include/config_parser.hpp @@ -24,8 +24,8 @@ namespace Seldon::Config enum class Model { DeGroot, - ActivityDrivenModel, - InertialModel, + ActivityDrivenModel, // @TODO : no need for model here + ActivityDrivenInertial, DeffuantModel }; @@ -82,7 +82,7 @@ struct ActivityDrivenSettings double covariance_factor = 0.0; }; -struct InertialSettings : public ActivityDrivenSettings +struct ActivityDrivenInertialSettings : public ActivityDrivenSettings { double friction_coefficient = 1.0; }; @@ -96,7 +96,8 @@ struct InitialNetworkSettings struct SimulationOptions { - using ModelVariantT = std::variant; + using ModelVariantT + = std::variant; Model model; std::string model_string; int rng_seed = std::random_device()(); diff --git a/include/model_factory.hpp b/include/model_factory.hpp index 0aaf145..a87f9dd 100644 --- a/include/model_factory.hpp +++ b/include/model_factory.hpp @@ -62,6 +62,23 @@ create_model_activity_driven( Network & network, const ModelVariantT & m } } +template +inline auto create_model_activity_driven_inertial( + Network & network, const ModelVariantT & model_settings, std::mt19937 & gen ) +{ + if constexpr( std::is_same_v ) + { + auto settings = std::get( model_settings ); + auto model = std::make_unique( settings, network, gen ); + return model; + } + else + { + throw std::runtime_error( "Incompatible agent and model type!" ); + return std::unique_ptr>{}; + } +} + template inline auto create_model_deffuant( Network & network, const ModelVariantT & model_settings, std::mt19937 & gen ) { diff --git a/include/models/InertialModel.hpp b/include/models/InertialModel.hpp index 70b83ef..ba95a0b 100644 --- a/include/models/InertialModel.hpp +++ b/include/models/InertialModel.hpp @@ -24,7 +24,7 @@ class InertialModel : public ActivityDrivenModelAbstract using NetworkT = Network; using WeightT = typename NetworkT::WeightT; - InertialModel( const Config::InertialSettings & settings, NetworkT & network, std::mt19937 & gen ); + InertialModel( const Config::ActivityDrivenInertialSettings & settings, NetworkT & network, std::mt19937 & gen ); void iteration() override; diff --git a/include/simulation.hpp b/include/simulation.hpp index 4eca2fc..118b824 100644 --- a/include/simulation.hpp +++ b/include/simulation.hpp @@ -70,6 +70,10 @@ class Simulation : public SimulationInterface { model = ModelFactory::create_model_activity_driven( network, options.model_settings, gen ); } + else if( options.model == Config::Model::ActivityDrivenInertial ) + { + model = ModelFactory::create_model_activity_driven_inertial( network, options.model_settings, gen ); + } else if( options.model == Config::Model::DeffuantModel ) { auto deffuant_settings = std::get( options.model_settings ); diff --git a/src/config_parser.cpp b/src/config_parser.cpp index b65d83a..63c8456 100644 --- a/src/config_parser.cpp +++ b/src/config_parser.cpp @@ -29,9 +29,82 @@ Model model_string_to_enum( std::string_view model_string ) { return Model::DeffuantModel; } + else if( model_string == "ActivityDrivenInertial" ) + { + return Model::ActivityDrivenInertial; + } throw std::runtime_error( fmt::format( "Invalid model string {}", model_string ) ); } +void set_if_specified( auto & opt, const auto & toml_opt ) +{ + using T = typename std::remove_reference::type; + auto t_opt = toml_opt.template value(); + if( t_opt.has_value() ) + opt = t_opt.value(); +} + +// Convenience function to parse activity settings +void parse_activity_settings( auto & model_settings, const auto & toml_model_opt, const auto & tbl ) +{ + set_if_specified( model_settings.dt, toml_model_opt["dt"] ); + set_if_specified( model_settings.m, toml_model_opt["m"] ); + set_if_specified( model_settings.eps, toml_model_opt["eps"] ); + set_if_specified( model_settings.gamma, toml_model_opt["gamma"] ); + set_if_specified( model_settings.homophily, toml_model_opt["homophily"] ); + set_if_specified( model_settings.reciprocity, toml_model_opt["reciprocity"] ); + set_if_specified( model_settings.alpha, toml_model_opt["alpha"] ); + set_if_specified( model_settings.K, toml_model_opt["K"] ); + // Mean activity model options + set_if_specified( model_settings.mean_activities, toml_model_opt["mean_activities"] ); + set_if_specified( model_settings.mean_weights, toml_model_opt["mean_weights"] ); + // Reluctances + set_if_specified( model_settings.use_reluctances, toml_model_opt["reluctances"] ); + set_if_specified( model_settings.reluctance_mean, toml_model_opt["reluctance_mean"] ); + set_if_specified( model_settings.reluctance_sigma, toml_model_opt["reluctance_sigma"] ); + set_if_specified( model_settings.reluctance_eps, toml_model_opt["reluctance_eps"] ); + + model_settings.max_iterations = tbl["model"]["max_iterations"].template value(); + + // bot + set_if_specified( model_settings.n_bots, toml_model_opt["n_bots"] ); + + auto push_back_bot_array = [&]( auto toml_node, auto & options_array, auto default_value ) + { + if( toml_node.is_array() ) + { + toml::array * toml_arr = toml_node.as_array(); + + toml_arr->for_each( + [&]( auto && elem ) + { + if( elem.is_integer() ) + { + options_array.push_back( elem.as_integer()->get() ); + } + else if( elem.is_floating_point() ) + { + options_array.push_back( elem.as_floating_point()->get() ); + } + } ); + } + else + { + options_array = std::vector( model_settings.n_bots, default_value ); + } + }; + + auto bot_opinion = toml_model_opt["bot_opinion"]; + auto bot_m = toml_model_opt["bot_m"]; + auto bot_activity = toml_model_opt["bot_activity"]; + auto bot_homophily = toml_model_opt["bot_homophily"]; + + push_back_bot_array( bot_m, model_settings.bot_m, model_settings.m ); + push_back_bot_array( bot_opinion, model_settings.bot_opinion, 0.0 ); + push_back_bot_array( bot_activity, model_settings.bot_activity, 1.0 ); + push_back_bot_array( bot_homophily, model_settings.bot_homophily, model_settings.homophily ); +} + SimulationOptions parse_config_file( std::string_view config_file_path ) { SimulationOptions options; @@ -41,14 +114,6 @@ SimulationOptions parse_config_file( std::string_view config_file_path ) options.rng_seed = tbl["simulation"]["rng_seed"].value_or( int( options.rng_seed ) ); - auto set_if_specified = [&]( auto & opt, const auto & toml_opt ) - { - using T = typename std::remove_reference::type; - auto t_opt = toml_opt.template value(); - if( t_opt.has_value() ) - opt = t_opt.value(); - }; - // Parse output settings options.output_settings.n_output_network = tbl["io"]["n_output_network"].value(); options.output_settings.n_output_agents = tbl["io"]["n_output_agents"].value(); @@ -87,63 +152,15 @@ SimulationOptions parse_config_file( std::string_view config_file_path ) { auto model_settings = ActivityDrivenSettings(); - set_if_specified( model_settings.dt, tbl[options.model_string]["dt"] ); - set_if_specified( model_settings.m, tbl[options.model_string]["m"] ); - set_if_specified( model_settings.eps, tbl[options.model_string]["eps"] ); - set_if_specified( model_settings.gamma, tbl[options.model_string]["gamma"] ); - set_if_specified( model_settings.homophily, tbl[options.model_string]["homophily"] ); - set_if_specified( model_settings.reciprocity, tbl[options.model_string]["reciprocity"] ); - set_if_specified( model_settings.alpha, tbl[options.model_string]["alpha"] ); - set_if_specified( model_settings.K, tbl[options.model_string]["K"] ); - // Mean activity model options - set_if_specified( model_settings.mean_activities, tbl[options.model_string]["mean_activities"] ); - set_if_specified( model_settings.mean_weights, tbl[options.model_string]["mean_weights"] ); - // Reluctances - set_if_specified( model_settings.use_reluctances, tbl[options.model_string]["reluctances"] ); - set_if_specified( model_settings.reluctance_mean, tbl[options.model_string]["reluctance_mean"] ); - set_if_specified( model_settings.reluctance_sigma, tbl[options.model_string]["reluctance_sigma"] ); - set_if_specified( model_settings.reluctance_eps, tbl[options.model_string]["reluctance_eps"] ); - - model_settings.max_iterations = tbl["model"]["max_iterations"].value(); - - // bot - set_if_specified( model_settings.n_bots, tbl[options.model_string]["n_bots"] ); - - auto push_back_bot_array = [&]( auto toml_node, auto & options_array, auto default_value ) - { - if( toml_node.is_array() ) - { - toml::array * toml_arr = toml_node.as_array(); - - toml_arr->for_each( - [&]( auto && elem ) - { - if( elem.is_integer() ) - { - options_array.push_back( elem.as_integer()->get() ); - } - else if( elem.is_floating_point() ) - { - options_array.push_back( elem.as_floating_point()->get() ); - } - } ); - } - else - { - options_array = std::vector( model_settings.n_bots, default_value ); - } - }; - - auto bot_opinion = tbl[options.model_string]["bot_opinion"]; - auto bot_m = tbl[options.model_string]["bot_m"]; - auto bot_activity = tbl[options.model_string]["bot_activity"]; - auto bot_homophily = tbl[options.model_string]["bot_homophily"]; - - push_back_bot_array( bot_m, model_settings.bot_m, model_settings.m ); - push_back_bot_array( bot_opinion, model_settings.bot_opinion, 0.0 ); - push_back_bot_array( bot_activity, model_settings.bot_activity, 1.0 ); - push_back_bot_array( bot_homophily, model_settings.bot_homophily, model_settings.homophily ); + parse_activity_settings( model_settings, tbl[options.model_string], tbl ); + options.model_settings = model_settings; + } + else if( options.model == Model::ActivityDrivenInertial ) + { + auto model_settings = ActivityDrivenInertialSettings(); + parse_activity_settings( model_settings, tbl[options.model_string], tbl ); + set_if_specified( model_settings.friction_coefficient, tbl[options.model_string]["friction_coefficient"] ); options.model_settings = model_settings; } @@ -183,10 +200,8 @@ void validate_settings( const SimulationOptions & options ) // @TODO: Check that start_output is less than the max_iterations? check( name_and_var( options.output_settings.start_output ), g_zero ); - if( options.model == Model::ActivityDrivenModel ) + auto validate_activity = [&]( const auto & model_settings ) { - auto model_settings = std::get( options.model_settings ); - check( name_and_var( model_settings.dt ), g_zero ); check( name_and_var( model_settings.m ), geq_zero ); check( name_and_var( model_settings.eps ), g_zero ); @@ -207,6 +222,19 @@ void validate_settings( const SimulationOptions & options ) check( name_and_var( model_settings.bot_activity ), check_bot_size, bot_msg ); check( name_and_var( model_settings.bot_opinion ), check_bot_size, bot_msg ); check( name_and_var( model_settings.bot_homophily ), check_bot_size, bot_msg ); + }; + + if( options.model == Model::ActivityDrivenModel ) + { + auto model_settings = std::get( options.model_settings ); + + validate_activity( model_settings ); + } + else if( options.model == Model::ActivityDrivenInertial ) + { + auto model_settings = std::get( options.model_settings ); + check( name_and_var( model_settings.friction_coefficient ), geq_zero ); + validate_activity( model_settings ); } else if( options.model == Model::DeGroot ) { @@ -237,11 +265,8 @@ void print_settings( const SimulationOptions & options ) fmt::print( "[Model]\n" ); fmt::print( " type {}\n", options.model_string ); - // @TODO: Optionally print *all* settings to the console, including defaults that were set - if( options.model == Model::ActivityDrivenModel ) + auto print_activity_settings = [&]( auto model_settings ) { - auto model_settings = std::get( options.model_settings ); - fmt::print( " max_iterations {}\n", model_settings.max_iterations ); fmt::print( " dt {} \n", model_settings.dt ); fmt::print( " m {} \n", model_settings.m ); @@ -270,6 +295,20 @@ void print_settings( const SimulationOptions & options ) fmt::print( " reluctance_eps {}\n", model_settings.reluctance_eps ); fmt::print( " covariance_factor {}\n", model_settings.covariance_factor ); } + }; + + // @TODO: Optionally print *all* settings to the console, including defaults that were set + if( options.model == Model::ActivityDrivenModel ) + { + auto model_settings = std::get( options.model_settings ); + + print_activity_settings( model_settings ); + } + else if( options.model == Model::ActivityDrivenInertial ) + { + auto model_settings = std::get( options.model_settings ); + print_activity_settings( model_settings ); + fmt::print( " friction_coefficient {}\n", model_settings.friction_coefficient ); } else if( options.model == Model::DeGroot ) { diff --git a/src/main.cpp b/src/main.cpp index 9343730..3f429fa 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -1,6 +1,7 @@ #include "config_parser.hpp" #include "models/DeGroot.hpp" #include "models/DeffuantModel.hpp" +#include "models/InertialModel.hpp" #include "simulation.hpp" #include #include @@ -70,6 +71,11 @@ int main( int argc, char * argv[] ) simulation = std::make_unique>( simulation_options, network_file, agent_file ); } + else if( simulation_options.model == Seldon::Config::Model::ActivityDrivenInertial ) + { + simulation = std::make_unique>( + simulation_options, network_file, agent_file ); + } else if( simulation_options.model == Seldon::Config::Model::DeffuantModel ) { simulation = std::make_unique>( diff --git a/src/models/InertialModel.cpp b/src/models/InertialModel.cpp index 0d982c2..df46cc1 100644 --- a/src/models/InertialModel.cpp +++ b/src/models/InertialModel.cpp @@ -9,7 +9,8 @@ namespace Seldon { -InertialModel::InertialModel( const Config::InertialSettings & settings, NetworkT & network, std::mt19937 & gen ) +InertialModel::InertialModel( + const Config::ActivityDrivenInertialSettings & settings, NetworkT & network, std::mt19937 & gen ) : ActivityDrivenModelAbstract( settings, network, gen ), friction_coefficient( settings.friction_coefficient ) {