Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: The correctness of dj #156

Open
maths644311798 opened this issue Sep 25, 2024 · 2 comments
Open

[Bug]: The correctness of dj #156

maths644311798 opened this issue Sep 25, 2024 · 2 comments

Comments

@maths644311798
Copy link

Issue Type

Usability

HEU Version

newest

OS Platform and Distribution

Ubuntu 22.04

Python Version

3.10

Compiler Version

gcc 14.2

Current Behavior?

In heu/library/algorithms/dj/README.md,

Decryption(sk, c):

- For each $j=1$ to $s$, do the following:
    - Compute $l_j = L_j(c^\lambda \bmod n^{j+1})$, where $L_j(z) = \frac{z-1}{n}\bmod n^j$
    - Compute $i_j=l_j-\sum_{k=2}^j{i_{j-1}\choose k}n^{k-1} \bmod n^k$

In this process, the module n^k is not correct. It should be n^j.
Then in secret_key.cc, the sentence

MPInt::MulMod(tmp.P, ind.P - MPInt{i - 1}, lut_->pq_pow[j - i + 1].P,
                    &tmp.P);
      MPInt::MulMod(tmp.Q, ind.Q - MPInt{i - 1}, lut_->pq_pow[j - i + 1].Q,
                    &tmp.Q);

seems wrong. The module lut_->pq_pow[j - i + 1].P is strange. I think lut_->pq_pow[j].P is a correct one.

Standalone code to reproduce the issue

MPInt SecretKey::Decrypt(const MPInt &ct) const {
  MPInt2 z, ls;
  // compute z = c^d mod n^(s+1)
  const auto &[ps1, qs1] = lut_->pq_pow[s_ + 1];
  z = {(ct % ps1).PowMod(lambda_, ps1), (ct % qs1).PowMod(lambda_, qs1)};
  //  compute ls = L(z) mod n^s
  const auto &[ps, qs] = lut_->pq_pow[s_];
  ls = {inv_pq_.P.MulMod((z.P - MPInt::_1_) / n_.P, ps),
        inv_pq_.Q.MulMod((z.Q - MPInt::_1_) / n_.Q, qs)};

  MPInt2 ind{ls.P % lut_->pq_pow[1].P, ls.Q % lut_->pq_pow[1].Q};
  MPInt2 l, tmp;
  for (auto j = 2u; j <= s_; ++j) {
    // compute l = L(c^d mod n^{j+1}) = ls mod n^j
    l = {ls.P % lut_->pq_pow[j].P, ls.Q % lut_->pq_pow[j].Q};
    // compute ind mod n^j
    tmp = ind;
    for (auto i = 2u; i <= j; ++i) {
      MPInt::MulMod(tmp.P, ind.P - MPInt{i - 1}, lut_->pq_pow[j - i + 1].P,
                    &tmp.P);
      MPInt::MulMod(tmp.Q, ind.Q - MPInt{i - 1}, lut_->pq_pow[j - i + 1].Q,
                    &tmp.Q);
      l.P -= tmp.P.MulMod(lut_->precomp[j][i].P, lut_->pq_pow[j].P);
      l.Q -= tmp.Q.MulMod(lut_->precomp[j][i].Q, lut_->pq_pow[j].Q);
    }
    ind = {l.P % lut_->pq_pow[j].P, l.Q % lut_->pq_pow[j].Q};
  }
  auto m_lambda = (ind.P + (ind.Q - ind.P) * pp_) % pmod_;
  return m_lambda.MulMod(mu_, pmod_);
}

Relevant log output

No response

@shaojian-ant
Copy link
Collaborator

@zhangwfjh @xfap Could you please help with this issue? Thanks!

@maths644311798
Copy link
Author

For the problem in secret_key.cc, I figure out the reason: the precomputed lut_->precomp[j][i] has a factor $n^{i-1}$, so tmp.P mod $n^{j-i+1}$ is enough.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants