@@ -361,10 +361,8 @@ def m1_domain_fn(samples):
361
361
proba_m2 = np .mean (is_de_minus , 0 )
362
362
if test_mode == "two" :
363
363
proba_de = proba_m1 + proba_m2
364
- sign = 1.0
365
364
else :
366
365
proba_de = np .maximum (proba_m1 , proba_m2 )
367
- sign = np .sign (proba_m1 - proba_m2 )
368
366
change_distribution_props = describe_continuous_distrib (
369
367
samples = change_fn (scales_1 , scales_2 , 1e-3 * pseudocounts ),
370
368
credible_intervals_levels = cred_interval_lvls ,
@@ -376,7 +374,7 @@ def m1_domain_fn(samples):
376
374
res = dict (
377
375
proba_de = proba_de ,
378
376
proba_not_de = 1.0 - proba_de ,
379
- bayes_factor = sign * ( np .log (proba_de + eps ) - np .log (1.0 - proba_de + eps ) ),
377
+ bayes_factor = np .log (proba_de + eps ) - np .log (1.0 - proba_de + eps ),
380
378
scale1 = px_scale_mean1 ,
381
379
scale2 = px_scale_mean2 ,
382
380
pseudocounts = pseudocounts ,
@@ -560,15 +558,15 @@ def estimate_pseudocounts_offset(
560
558
artefact_scales_a = max_scales_a [where_zero_a ]
561
559
eps_a = np .quantile (artefact_scales_a , q = quantile )
562
560
else :
563
- eps_a = 1e-5
561
+ eps_a = 1e-10
564
562
565
563
if where_zero_b .sum () >= 1 :
566
564
artefact_scales_b = max_scales_b [where_zero_b ]
567
565
eps_b = np .quantile (artefact_scales_b , q = quantile )
568
566
else :
569
- eps_b = 1e-5
567
+ eps_b = 1e-10
570
568
res = np .maximum (eps_a , eps_b )
571
- return np .maximum (1e-5 , res )
569
+ return np .maximum (1e-10 , res / len ( max_scales_a ) )
572
570
573
571
574
572
def pairs_sampler (
@@ -597,7 +595,7 @@ def pairs_sampler(
597
595
param sanity_check_perm: If True, resulting mixed arrays arr1 and arr2 are mixed together
598
596
In most cases, this parameter should remain False
599
597
sanity_check_perm
600
- TODO
598
+ do permutation
601
599
weights1
602
600
probabilities associated to array 1 for random sampling
603
601
weights2
0 commit comments