forked from Atcold/torch-Video-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquiz.tex
37 lines (34 loc) · 895 Bytes
/
quiz.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
\documentclass{article}
\usepackage{pgf}
\usepackage{amsmath,amssymb,bm}
% Random int
\pgfmathsetseed{\number\pdfrandomseed}
\newcommand\rint{\pgfmathparse{random(10)}\pgfmathresult}
\begin{document}
\title{Quiz: forward propagation dimensionality}
\author{BME595 DeepLearning}
\date{\today}
\maketitle
Given a network with the size vector $\bm{s}=(\rint, \rint, \rint, \rint)^\top$, determine $n$, $K$, $L$ and write the dimensionality of:
%
\begin{align*}
\bm{x} \\
\bm{\hat x} \\
\bm{a}^{(1)} \\
\bm{\hat a}^{(1)} \\
\bm{\Theta}^{(1)} \\
\bm{z}^{(2)} \\
\bm{a}^{(2)} \\
\bm{\hat a}^{(2)} \\
\bm{\Theta}^{(2)} \\
\bm{z}^{(3)} \\
\bm{a}^{(3)} \\
\bm{\hat a}^{(3)} \\
\bm{\Theta}^{(3)} \\
\bm{z}^{(4)} \\
\bm{a}^{(4)} \\
\bm{\hat a}^{(4)} \\
h_{\bm{\Theta}}(\bm{x}) \\
\bm{y}
\end{align*}
\end{document}