- Axler, ex 8B.4
- Axler, ex 8B.15
- Axler, ex 8C.1
- Axler, ex 8C.9
- Axler, ex 7B.10
- Axler, ex 7B.14(a)
- Axler, ex 8A.4
- Axler, ex 8A.13
- Axler, ex 6B.10
- Axler, ex 7A.4
- Axler, ex 7A.11
- Axler, ex 7B.4
- Axler, ex 6A.5(a)
- Axler, ex 6A.7
- Axler, ex 6B.3
- Axler, ex 6B.5
- Axler, ex 3B.5
- Axler, ex 3B.9
- Axler, ex 3B.12
- Axler, ex 5B.2
- Axler, ex 3A.8
- Axler, ex 3B.6
- Axler, ex 3B.13
- Axler, ex 2D.5
- Axler, ex 2D.8
- Axler, ex 2D.12
- Axler, ex 2E.12
- Axler, ex 3A.2
- Axler, ex 2B.3
- Axler, ex 2B.10
- Axler, ex 2B.18
- Axler, ex 2C.9
- Axler, ex 2C.10
- Axler, ex 2A.3
- Axler, ex 2A.7
- Axler, ex 2A.12
- Axler, ex 1A.11
- Show that the properties normality, translation invariance, and countable additivity imply the inclusion–exclusion principle: For any sets A, B we have m(A ∪ B) + m(A ∩ B) = m(A) + m(B).
- Axler, ex 1B.3
- Axler, ex 2A.1
- Axler, ex 2A.4
- Axler, ex 0C.1
- Axler, ex 0C.2
- Axler, ex 0C.4
- Axler, ex 1A.1
- Axler, ex 1A.2