Skip to content

Commit 8ce8a5f

Browse files
authored
Merge pull request #158 from scijava/scijava/docs/media-scijava-org
Update links to use media.scijava.org
2 parents 899d4b6 + d91c812 commit 8ce8a5f

File tree

5 files changed

+27
-27
lines changed

5 files changed

+27
-27
lines changed

docs/ops/doc/Paper2024.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -9,25 +9,25 @@ Python (scyjava)
99
This use case illustrates the ease with which SciJava Ops can be accessed in Python, showcasing ``OpEnvironment`` setup and simple image processing. The full workflow can be found in the `scyjava use case <examples/scyjava.html>`_.
1010

1111
+--------------+--------------------------------------------------------------------------------------+
12-
| |scyj_thumb| |`3D 3T3 Mouse Nucleus <https://media.imagej.net/scijava-ops/1.0.0/3t3_nucleus.tif>`_ |
12+
| |scyj_thumb| |`3D 3T3 Mouse Nucleus <https://media.scijava.org/scijava-ops/1.0.0/3t3_nucleus.tif>`_ |
1313
+--------------+--------------------------------------------------------------------------------------+
1414

1515
Fluorescence Lifetime Image Analysis
1616
------------------------------------
1717

1818
This use case illustrates how SciJava Ops can be freely extended with additional algorithms libraries, making use of the SciJava framework for convenience and performance in FLIM analysis. The full workflow can be found in the `FLIM use case <examples/flim_analysis.html>`_.
1919

20-
+--------------+----------------------------------------------------------------------------------+
21-
| |flim_thumb| | `BPAE cells <https://media.imagej.net/scijava-ops/1.0.0/flim_example_data.sdt>`_ |
22-
+--------------+----------------------------------------------------------------------------------+
20+
+--------------+-----------------------------------------------------------------------------------+
21+
| |flim_thumb| | `BPAE cells <https://media.scijava.org/scijava-ops/1.0.0/flim_example_data.sdt>`_ |
22+
+--------------+-----------------------------------------------------------------------------------+
2323

2424
Spatially Adapted Colocalization Analysis
2525
-----------------------------------------
2626

2727
This use case illustrates the novel scientific utility of the SciJava Ops Image library using powerful algorithms for pixel colocalization. The full workflow can be found in the `SACA use case <examples/deconvolution.html>`_.
2828

2929
+--------------+----------------------------------------------------------------------------------------------------------------------+
30-
| |saca_thumb| | `HeLa cell expressing HIV gene products <https://media.imagej.net/scijava-ops/1.0.0/hela_hiv_gag_ms2_mcherry.tif>`_ |
30+
| |saca_thumb| | `HeLa cell expressing HIV gene products <https://media.scijava.org/scijava-ops/1.0.0/hela_hiv_gag_ms2_mcherry.tif>`_ |
3131
+--------------+----------------------------------------------------------------------------------------------------------------------+
3232

3333
Deconvolution
@@ -36,15 +36,15 @@ Deconvolution
3636
This use case illustrates the novel scientific utility of the SciJava Ops Image library using powerful algorithms for image deconvolution. The full workflow can be found in the `deconvolution use case <examples/deconvolution.html>`_.
3737

3838
+---------------+-------------------------------------------------------------------------------------------+
39-
| |decon_thumb| | `3D HeLa nucleus <https://media.imagej.net/scijava-ops/1.0.0/hela_nucleus.tif>`_ |
39+
| |decon_thumb| | `3D HeLa nucleus <https://media.scijava.org/scijava-ops/1.0.0/hela_nucleus.tif>`_ |
4040
+---------------+-------------------------------------------------------------------------------------------+
4141

42-
.. |decon_thumb| image:: https://media.imagej.net/scijava-ops/1.0.0/hela_nucleus_thumbnail.png
42+
.. |decon_thumb| image:: https://media.scijava.org/scijava-ops/1.0.0/hela_nucleus_thumbnail.png
4343
:width: 10em
44-
.. |flim_thumb| image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_input_56.png
44+
.. |flim_thumb| image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_input_56.png
4545
:width: 10em
46-
.. |saca_thumb| image:: https://media.imagej.net/scijava-ops/1.0.0/hela_hiv_gag_ms2_mcherry_thumbnail.png
46+
.. |saca_thumb| image:: https://media.scijava.org/scijava-ops/1.0.0/hela_hiv_gag_ms2_mcherry_thumbnail.png
4747
:width: 10em
48-
.. |scyj_thumb| image:: https://media.imagej.net/scijava-ops/1.0.0/3t3_nucleus_thumbnail.png
48+
.. |scyj_thumb| image:: https://media.scijava.org/scijava-ops/1.0.0/3t3_nucleus_thumbnail.png
4949
:width: 10em
5050

docs/ops/doc/examples/deconvolution.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ the RLTV algorithm returns improved axial and lateral resolution when compared t
1010

1111
You can download the 3D HeLa cell nuclus dataset `here`_.
1212

13-
.. figure:: https://media.imagej.net/scijava-ops/1.0.0/rltv_example_1.gif
13+
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/rltv_example_1.gif
1414

1515
Results of RLTV deconvolution on the sample data.
1616

@@ -145,5 +145,5 @@ SciJava Ops via Fiji's scripting engine with `script parameters`_:
145145
146146
.. _`Dey et. al, Micros Res Tech 2006`: https://pubmed.ncbi.nlm.nih.gov/16586486/
147147
.. _`Gibson & Lanni, JOSA 1992`: https://pubmed.ncbi.nlm.nih.gov/1738047/
148-
.. _`here`: https://media.imagej.net/scijava-ops/1.0.0/hela_nucleus.tif
148+
.. _`here`: https://media.scijava.org/scijava-ops/1.0.0/hela_nucleus.tif
149149
.. _`script parameters`: https://imagej.net/scripting/parameters

docs/ops/doc/examples/flim_analysis.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -4,16 +4,16 @@ FLIM Analysis
44

55
In this example we will use SciJava Ops within Fiji to perform `FLIM`_ analysis, which is used in many situations including photosensitizer detection and `FRET`_ measurement.
66

7-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_input.gif
7+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_input.gif
88
:width: 49%
9-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_pseudocolored_annotated.png
9+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_pseudocolored_annotated.png
1010
:width: 49%
1111

1212
We use a sample of `FluoCells™ Prepared Slide #1`_, imaged by `Jenu Chacko`_ using `Openscan-LSM`_ and SPC180 electronics with multiphoton excitation and a 40x WI lens. **Notably, the full field for this image is 130 microns in each axial dimension**.
1313

1414
FluoCells™ Prepared Slide #1 contains bovine pulmonary artery endothelial cells (BPAEC). MitoTracker™ Red CMXRos was used to stain the mitochondria in the live cells, with accumulation dependent upon membrane potential. Following fixation and permeabilization, F-actin was stained with Alexa Fluor™ 488 phalloidin, and the nuclei were counterstained with the blue-fluorescent DNA stain DAPI.
1515

16-
The sample data can be downloaded `here <https://media.imagej.net/scijava-ops/1.0.0/flim_example_data.sdt>`_ and can be loaded into Fiji with `Bio-Formats`_ using ``File → Open``. When presented with the ``Bio-Formats Import Options`` screen, it may be helpful to select ``Metadata viewing → Display metadata`` to determine values necessary for analysis. Then, select ``OK``. The data may take a minute to load.
16+
The sample data can be downloaded `here <https://media.scijava.org/scijava-ops/1.0.0/flim_example_data.sdt>`_ and can be loaded into Fiji with `Bio-Formats`_ using ``File → Open``. When presented with the ``Bio-Formats Import Options`` screen, it may be helpful to select ``Metadata viewing → Display metadata`` to determine values necessary for analysis. Then, select ``OK``. The data may take a minute to load.
1717

1818
Within the script, the `Levenberg-Marquardt algorithm`_ fitting Op of SciJava Ops FLIM is used to fit the data.
1919

@@ -48,13 +48,13 @@ The script above will display the fit results, as well as a *pseudocolored* outp
4848

4949
* Value is a function of A\ :subscript:`1`
5050

51-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_a1.png
51+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_a1.png
5252
:width: 32%
5353

54-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_tau1.png
54+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_tau1.png
5555
:width: 32%
5656

57-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_pseudocolored.png
57+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_pseudocolored.png
5858
:width: 32%
5959

6060

@@ -168,10 +168,10 @@ With 130 microns across each direction in the dataset, we have 512/130~3.938 pix
168168

169169
The results are shown in the panels below. The left panel shows panel 56 of the original image, contrasted using ImageJ's Brightness and Contrast tool, and the right panel shows the **annotated**, pseudocolored results.
170170

171-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_input_56.png
171+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_input_56.png
172172
:width: 49%
173173

174-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_pseudocolored_annotated.png
174+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_pseudocolored_annotated.png
175175
:width: 49%
176176

177177
.. tabs::
@@ -215,10 +215,10 @@ The provided script allows users to specify ROIs by drawing selections using the
215215

216216
In the panels below, we show the results of executing both scripts with computation restricted to the area around a single cell. The left panel shows slide 56 of the input data, annotated with an elliptical ROI drawn using ImageJ's elliptical selection tool and contrasted using ImageJ's Brightness and Contrast tool. The right panel shows the pseudocolored result, annotated with color and scale bars, with computation limited to the selected ellipse.
217217

218-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_input_56_roi.png
218+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_input_56_roi.png
219219
:width: 49%
220220

221-
.. image:: https://media.imagej.net/scijava-ops/1.0.0/flim_example_pseudocolored_annotated_roi.png
221+
.. image:: https://media.scijava.org/scijava-ops/1.0.0/flim_example_pseudocolored_annotated_roi.png
222222
:width: 49%
223223

224224

docs/ops/doc/examples/opencv_denoise.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ images for comparison.
1111

1212
The sample data for this example can be downloaded `here`_.
1313

14-
.. figure:: https://media.imagej.net/scijava-ops/1.0.0/opencv_denoise_example_1.png
14+
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/opencv_denoise_example_1.png
1515

1616
Results of OpenCV's non-local means denoise algorithm with the sample data.
1717

@@ -121,4 +121,4 @@ SciJava Ops via Fiji's scripting engine with `script parameters`_:
121121

122122
.. _`script parameters`: https://imagej.net/scripting/parameters
123123
.. _`OpenCV libray`: https://docs.opencv.org/4.x/d5/d69/tutorial_py_non_local_means.html
124-
.. _`here`: https://media.imagej.net/scijava-ops/1.0.0/opencv_denoise_16bit.tif
124+
.. _`here`: https://media.scijava.org/scijava-ops/1.0.0/opencv_denoise_16bit.tif

docs/ops/doc/examples/scyjava.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ nucleus dataset (with shape: ``37, 300, 300``), performes image processing with
88
the 3D volume of the nucleus by creating a mesh. Finally the input image, processed image and the segmented label images are displayed in
99
``matplotlib``, and the volume (μm\ :sup:`3`) is printed to the console.
1010

11-
.. figure:: https://media.imagej.net/scijava-ops/1.0.0/scyjava_example_1.png
11+
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/scyjava_example_1.png
1212

1313
.. code-block:: bash
1414
@@ -148,7 +148,7 @@ Activate the ``scijava-ops`` conda/mamba environment and run the following Pytho
148148
ops = OpEnvironment.build()
149149
150150
# open image
151-
narr = read_image_from_url("https://media.imagej.net/scijava-ops/1.0.0/3t3_nucleus.tif")
151+
narr = read_image_from_url("https://media.scijava.org/scijava-ops/1.0.0/3t3_nucleus.tif")
152152
cal = [0.065, 0.065, 0.1] # microns, from imaging parameters
153153
rai = numpy_to_imglib(narr)
154154
results = segment_nuclei(rai)
@@ -167,4 +167,4 @@ Activate the ``scijava-ops`` conda/mamba environment and run the following Pytho
167167
plt.tight_layout()
168168
plt.show()
169169
170-
.. _`3D 3T3 cell`: https://media.imagej.net/scijava-ops/1.0.0/3t3_nucleus.tif
170+
.. _`3D 3T3 cell`: https://media.scijava.org/scijava-ops/1.0.0/3t3_nucleus.tif

0 commit comments

Comments
 (0)