From 307c49c6ff5bb8e80515a7c39127462d3728efd6 Mon Sep 17 00:00:00 2001 From: Gabriel Selzer Date: Tue, 30 Apr 2024 15:07:49 -0500 Subject: [PATCH] Update ScyJava use case with units --- docs/ops/doc/examples/scyjava.rst | 34 ++++++++++++++++++++++--------- 1 file changed, 24 insertions(+), 10 deletions(-) diff --git a/docs/ops/doc/examples/scyjava.rst b/docs/ops/doc/examples/scyjava.rst index 4b75df5a6..cf32e324e 100644 --- a/docs/ops/doc/examples/scyjava.rst +++ b/docs/ops/doc/examples/scyjava.rst @@ -6,10 +6,16 @@ This example demonstrates how to use SciJava Ops with Python. Using SciJava Ops Java code access and ``imglyb`` to bridge the ImgLib2 and NumPy data structures. The Python script in this example downloads a `3D 3T3 cell`_ nucleus dataset (with shape: ``37, 300, 300``), performes image processing with to improve the nucleus signal, segments the nucleus and measures the 3D volume of the nucleus by creating a mesh. Finally the input image, processed image and the segmented label images are displayed in -``matplotlib``. +``matplotlib``, and the volume (μm\ :sup:`3`) is printed to the console. .. figure:: https://media.imagej.net/scijava-ops/1.0.0/scyjava_example_1.png +.. code-block:: bash + + [INFO]: Adding SciJava repo... + [INFO]: Adding endpoints... + [INFO]: Adding classes... + [INFO]: volume = 456.0139675000041 μm^3 To run this example, create a conda/mamba environment with the following ``environment.yml`` file: @@ -94,23 +100,30 @@ Activate the ``scijava-ops`` conda/mamba environment and run the following Pytho ops.op("math.mul").input(rai, mean_blur).output(mul_result).compute() ops.op("threshold.huang").input(mul_result).output(thres_mask).compute() labeling = ops.op("labeling.cca").input(thres_mask, StructuringElement.EIGHT_CONNECTED).apply() - + return [mul_result, thres_mask, labeling] - def measure_volume(rai: "net.imglib2.RandomAccessibleInterval") -> float: + def measure_volume(rai: "net.imglib2.RandomAccessibleInterval", cal: List[float]) -> float: """Create a mesh and measure its volume. - + :param rai: Input RandomAccessibleInterval (RAI) + :param cal: imaging calibration, with one float per dimension in the input, + in microns :return: Volume of the 3D mesh """ mesh = ops.op("geom.marchingCubes").input(rai).apply() - volume = ops.op("geom.size").input(mesh).apply() - - return float(volume.getRealDouble()) + # Mesh volume returned in voxels + volume = ops.op("geom.size").input(mesh).apply().getRealDouble() + + # Convert voxels to um^3 + for c in cal: + volume *= c + + return volume - # add SciJava repository + # add SciJava repository print("[INFO]: Adding SciJava repo...") sj.config.add_repositories({'scijava.public': 'https://maven.scijava.org/content/groups/public'}) @@ -135,10 +148,11 @@ Activate the ``scijava-ops`` conda/mamba environment and run the following Pytho ops = OpEnvironment.build() # open image - narr = read_image_from_url("https://media.imagej.net/scijava-ops/1.0.0/hela_nucleus.tif") + narr = read_image_from_url("https://media.imagej.net/scijava-ops/1.0.0/3t3_nucleus.tif") + cal = [0.065, 0.065, 0.1] # microns, from imaging parameters rai = numpy_to_imglib(narr) results = segment_nuclei(rai) - print(f"[INFO]: volume = {measure_volume(results[1])}") + print(f"[INFO]: volume = {measure_volume(results[1], cal)} μm^3") # display results with matplotlib processed = imglib_to_numpy(results[0], "float32")