-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmpi.go
849 lines (740 loc) · 28.2 KB
/
mpi.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
// Copyright 2019 Seth Bromberger. All Rights Reserved.
// This code was derived from / inspired by Gosl:
// Copyright 2016 The Gosl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !windows
// +build !windows
//go:generate stringer -type=DataType
//go:generate stringer -type=Op
// Package mpi wraps the Message Passing Interface for parallel computations
package mpi
/*
#include "mpi.h"
MPI_Comm World = MPI_COMM_WORLD;
MPI_Status* StIgnore = MPI_STATUS_IGNORE;
#define DOUBLE_COMPLEX double complex
*/
import "C"
import (
"fmt"
"log"
"unsafe"
)
type DataType uint8
const (
AnySource = C.MPI_ANY_SOURCE
AnyTag = C.MPI_ANY_TAG
)
const (
// These constants represent (a subset of) MPI datatypes.
Byte DataType = iota
Uint // This maps to a uint32 in go.
Int // This maps to an int32 in go.
Ulong // This maps to a uint64 in go.
Long // This maps to an int64 in go.
Float // This maps to a float32 in go
Double // This maps to a float64 in go.
Complex // This maps to a complex128 in go.
)
var dataTypes = [...]C.MPI_Datatype{
C.MPI_BYTE,
C.MPI_UINT32_T,
C.MPI_INT32_T,
C.MPI_UINT64_T,
C.MPI_INT64_T,
C.MPI_FLOAT,
C.MPI_DOUBLE,
C.MPI_DOUBLE_COMPLEX,
}
const (
CommTypeShared = C.MPI_COMM_TYPE_SHARED
)
type Op uint8
const (
OpSum Op = iota
OpMin
OpMax
OpProd
OpLand
OpLor
OpLxor
OpBand
OpBor
OpBxor
)
var ops = [...]C.MPI_Op{
C.MPI_SUM,
C.MPI_MIN,
C.MPI_MAX,
C.MPI_PROD,
C.MPI_LAND,
C.MPI_LOR,
C.MPI_LXOR,
C.MPI_BAND,
C.MPI_BOR,
C.MPI_BXOR,
}
// Returns true if the datatype can be used for the given operation.
// This is needed because boolean/logical operators are invalid for non-ints,
// and complex numbers have no ordering.
func isValidDataTypeForOp(d DataType, o Op) bool {
if o == OpLand || o == OpLor || o == OpLxor || o == OpBand || o == OpBor || o == OpBxor {
return d == Byte || d == Uint || d == Int || d == Ulong || d == Long
}
if o == OpMin || o == OpMax {
return d != Complex
}
return true
}
// Status wraps an MPI_Status structure.
type Status struct {
mpiStatus C.MPI_Status
}
func (o *Communicator) GetAttr(attribute int) (int, bool, error) {
var n int
var found C.int
x := C.MPI_Comm_get_attr(o.comm, C.int(attribute), unsafe.Pointer(&n), &found)
if x != C.MPI_SUCCESS {
return int(n), int(found) == 1, fmt.Errorf("GetAttr returned error %d\n", x)
}
return int(n), int(found) == 1, nil
}
func (o *Communicator) GetMaxTag() (int, error) {
x, found, err := o.GetAttr(C.MPI_TAG_UB)
if !found {
return -1, fmt.Errorf("No max tag value found")
}
if err != nil {
return -1, err
}
return x, nil
}
// Probe issues an MPI Probe and returns a Status structure.
func (o *Communicator) Probe(source int, tag int) *Status {
var s Status
C.MPI_Probe(C.int(source), C.int(tag), o.comm, &(s.mpiStatus))
return &s
}
func (o *Communicator) Mprobe(source int, tag int) (Status, C.MPI_Message) {
var s Status
var msg C.MPI_Message
C.MPI_Mprobe(C.int(source), C.int(tag), o.comm, &msg, &(s.mpiStatus))
return s, msg
}
// GetCount returns a count of elements of type `t` from a Status object.
func (s *Status) GetCount(t DataType) int {
var n C.int
C.MPI_Get_count(&s.mpiStatus, dataTypes[t], &n)
return int(n)
}
// GetError returns the error code from a Status object.
func (s *Status) GetError() int {
return int(s.mpiStatus.MPI_ERROR)
}
// GetSource returns the source (sender) of an MPI message.
func (s *Status) GetSource() int {
return int(s.mpiStatus.MPI_SOURCE)
}
// GetTag returns the tag associated with the MPI channel.
func (s *Status) GetTag() int {
return int(s.mpiStatus.MPI_TAG)
}
// IsOn tells whether MPI is on or not
// NOTE: this returns true even after Stop
func IsOn() bool {
var flag C.int
C.MPI_Initialized(&flag)
return flag != 0
}
// Start initialises MPI
func Start(threaded bool) {
if threaded {
var x C.int
C.MPI_Init_thread(nil, nil, C.MPI_THREAD_MULTIPLE, &x)
if x != C.MPI_THREAD_MULTIPLE {
log.Fatalf("Requested threading support %d not available (%d).", C.MPI_THREAD_MULTIPLE, x)
}
} else {
C.MPI_Init(nil, nil)
}
}
// Stop finalises MPI
func Stop() {
C.MPI_Finalize()
}
// WorldRank returns the processor rank/ID within the World communicator
func WorldRank() (rank int) {
var r int32
C.MPI_Comm_rank(C.World, (*C.int)(unsafe.Pointer(&r)))
return int(r)
}
// WorldSize returns the number of processors in the World communicator
func WorldSize() (size int) {
var s int32
C.MPI_Comm_size(C.World, (*C.int)(unsafe.Pointer(&s)))
return int(s)
}
func WorldTime() float64 {
return float64(C.MPI_Wtime())
}
// Communicator holds the World communicator or a subset communicator
type Communicator struct {
comm C.MPI_Comm
group C.MPI_Group
MaxTag int
}
// NewCommunicator creates a new communicator or returns the World communicator
// ranks -- World indices of processors in this Communicator.
// use nil or empty to get the World Communicator
func NewCommunicator(ranks []int) *Communicator {
var o Communicator
if len(ranks) == 0 {
o.comm = C.World
C.MPI_Comm_group(C.World, &o.group)
maxtag, err := o.GetMaxTag()
if err != nil {
panic(err)
}
o.MaxTag = maxtag
return &o
}
rs := make([]int32, len(ranks))
for i := 0; i < len(ranks); i++ {
rs[i] = int32(ranks[i])
}
n := C.int(len(ranks))
r := (*C.int)(unsafe.Pointer(&rs[0]))
var wgroup C.MPI_Group
C.MPI_Comm_group(C.World, &wgroup)
C.MPI_Group_incl(wgroup, n, r, &o.group)
C.MPI_Comm_create(C.World, o.group, &o.comm)
return &o
}
// SplitType splits the communicator using MPI_Comm_split_type.
// func (o *Communicator) SplitType(type int)
// Rank returns the processor rank/ID
func (o *Communicator) Rank() (rank int) {
var r int32
C.MPI_Comm_rank(o.comm, (*C.int)(unsafe.Pointer(&r)))
return int(r)
}
// Size returns the number of processors
func (o *Communicator) Size() (size int) {
var s int32
C.MPI_Comm_size(o.comm, (*C.int)(unsafe.Pointer(&s)))
return int(s)
}
// Abort aborts MPI
func (o *Communicator) Abort(errcode int) {
C.MPI_Abort(o.comm, C.int(errcode))
}
// Barrier forces synchronisation
func (o *Communicator) Barrier() {
C.MPI_Barrier(o.comm)
}
// BcastBytes broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastBytes(x []byte, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Int], C.int(root), o.comm)
}
// BcastUint32s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastUint32s(x []uint32, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Uint], C.int(root), o.comm)
}
// BcastInt32s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastInt32s(x []int32, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Int], C.int(root), o.comm)
}
// BcastUint64s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastUint64s(x []uint64, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Ulong], C.int(root), o.comm)
}
// BcastInt64s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastInt64s(x []int64, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Long], C.int(root), o.comm)
}
// BcastFloat32s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastFloat32s(x []float32, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Float], C.int(root), o.comm)
}
// BcastFloat64s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastFloat64s(x []float64, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Double], C.int(root), o.comm)
}
// BcastComplex128s broadcasts slice from root `root` to all other processors
func (o *Communicator) BcastComplex128s(x []complex128, root int) {
buf := unsafe.Pointer(&x[0])
C.MPI_Bcast(buf, C.int(len(x)), dataTypes[Complex], C.int(root), o.comm)
}
// ReduceBytes performs a distributed reduce operation on bytes, accumulating the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceBytes(dest, orig []byte, op Op, root int) error {
d := Byte
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceUint32s performs a distributed reduce operation on `uint32`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceUint32s(dest, orig []uint32, op Op, root int) error {
d := Uint
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceInt32s performs a distributed reduce operation on `int32`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceInt32s(dest, orig []int32, op Op, root int) error {
d := Int
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceUInt64s performs a distributed reduce operation on `uint64`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceUint64s(dest, orig []uint64, op Op, root int) error {
d := Ulong
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceInt64s performs a distributed reduce operation on `int64`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceInt64s(dest, orig []int64, op Op, root int) error {
d := Long
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceFloat32s performs a distributed reduce operation on `float32`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceFloat32s(dest, orig []float32, op Op, root int) error {
d := Float
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceFloat64s performs a distributed reduce operation on `float64`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceFloat64s(dest, orig []float64, op Op, root int) error {
d := Double
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// ReduceComplex128s performs a distributed reduce operation on `complex128`s, accumulating
// the operation on the given root.
// Note: dest and orig must be different slices.
func (o *Communicator) ReduceComplex128s(dest, orig []complex128, op Op, root int) error {
d := Complex
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Reduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], C.int(root), o.comm)
return nil
}
// AllreduceBytes performs a distributed allreduce operation on bytes, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceBytes(dest, orig []byte, op Op, root int) error {
d := Byte
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceUint32s performs a distributed allreduce operation on `int32`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceUint32s(dest, orig []uint32, op Op, root int) error {
d := Uint
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceInt32s performs a distributed allreduce operation on `int32`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceInt32s(dest, orig []int32, op Op, root int) error {
d := Int
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceUint64s performs a distributed allreduce operation on `int64`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceUint64s(dest, orig []uint64, op Op, root int) error {
d := Ulong
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceInt64s performs a distributed allreduce operation on `int64`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceInt64s(dest, orig []int64, op Op, root int) error {
d := Long
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceFloat32s performs a distributed allreduce operation on `float32`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceFloat32s(dest, orig []float32, op Op, root int) error {
d := Float
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceFloat64s performs a distributed allreduce operation on `float64`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceFloat64s(dest, orig []float64, op Op, root int) error {
d := Double
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// AllreduceComplex128s performs a distributed allreduce operation on `complex128`s, accumulating
// the operation on all roots.
// Note: dest and orig must be different slices.
func (o *Communicator) AllreduceComplex128s(dest, orig []complex128, op Op, root int) error {
d := Complex
if !isValidDataTypeForOp(d, op) {
return fmt.Errorf("DataType %v cannot be used with Operation %v", d, op)
}
sendbuf := unsafe.Pointer(&orig[0])
recvbuf := unsafe.Pointer(&dest[0])
C.MPI_Allreduce(sendbuf, recvbuf, C.int(len(dest)), dataTypes[d], ops[op], o.comm)
return nil
}
// SendBytes sends values to processor toID with given tag
func (o *Communicator) SendBytes(vals []byte, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Byte], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocBytes receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocBytes(vals []byte, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Byte], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// MrecvPreallocBytes receives values from processor fromId with given tag with threading
func (o *Communicator) MrecvPreallocBytes(vals []byte, fromID int, tag int, msg C.MPI_Message) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Mrecv(buf, C.int(len(vals)), dataTypes[Byte], &msg, &(status.mpiStatus))
return status
}
// RecvBytes returns a slice of bytes received from processor fromId with given tag.
func (o *Communicator) RecvBytes(fromID int, tag int) ([]byte, Status) {
l := o.Probe(fromID, tag).GetCount(Byte)
buf := make([]byte, l)
status := o.RecvPreallocBytes(buf, fromID, tag)
return buf, status
}
// MrecvBytes returns a slice of bytes received from processor fromId with given tag.
func (o *Communicator) MrecvBytes(fromID int, tag int) ([]byte, Status) {
// runtime.LockOSThread()
pstatus, msg := o.Mprobe(fromID, tag)
l := pstatus.GetCount(Byte)
buf := make([]byte, l)
status := o.MrecvPreallocBytes(buf, fromID, tag, msg)
return buf, status
}
// SendUint32s sends values to processor toID with given tag
func (o *Communicator) SendUInt32s(vals []uint32, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Uint], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocUint32s receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocUint32s(vals []uint32, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Uint], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// RecvUint32s returns a slice of bytes received from processor fromId with given tag.
func (o *Communicator) RecvUint32s(fromID int, tag int) ([]uint32, Status) {
l := o.Probe(fromID, tag).GetCount(Uint)
buf := make([]uint32, l)
status := o.RecvPreallocUint32s(buf, fromID, tag)
return buf, status
}
// SendInt32s sends values to processor toID with given tag
func (o *Communicator) SendInt32s(vals []int32, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Int], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocInt32s receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocInt32s(vals []int32, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Int], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// RecvInt32s returns a slice of `int32`s received from processor fromId with given tag.
func (o *Communicator) RecvInt32s(fromID int, tag int) ([]int32, Status) {
l := o.Probe(fromID, tag).GetCount(Int)
buf := make([]int32, l)
status := o.RecvPreallocInt32s(buf, fromID, tag)
return buf, status
}
// SendUint64s sends values to processor toID with given tag
func (o *Communicator) SendUint64s(vals []uint64, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Ulong], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocUint64s receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocUint64s(vals []uint64, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Ulong], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// RecvUint64s returns a slice of `uint64`s received from processor fromId with given tag.
func (o *Communicator) RecvUint64s(fromID int, tag int) ([]uint64, Status) {
l := o.Probe(fromID, tag).GetCount(Ulong)
buf := make([]uint64, l)
status := o.RecvPreallocUint64s(buf, fromID, tag)
return buf, status
}
// SendInt64s sends values to processor toID with given tag
func (o *Communicator) SendInt64s(vals []int64, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Long], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocInt64s receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocInt64s(vals []int64, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Long], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// RecvInt64s returns a slice of `int64`s received from processor fromId with given tag.
func (o *Communicator) RecvInt64s(fromID int, tag int) ([]int64, Status) {
l := o.Probe(fromID, tag).GetCount(Long)
buf := make([]int64, l)
status := o.RecvPreallocInt64s(buf, fromID, tag)
return buf, status
}
// SendFloat64s sends values to processor toID with given tag
func (o *Communicator) SendFloat64s(vals []float64, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Double], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocFloat64s receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocFloat64s(vals []float64, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Double], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// RecvFloat64s returns a slice of `float64`s received from processor fromId with given tag.
func (o *Communicator) RecvFloat64s(fromID int, tag int) ([]float64, Status) {
l := o.Probe(fromID, tag).GetCount(Double)
buf := make([]float64, l)
status := o.RecvPreallocFloat64s(buf, fromID, tag)
return buf, status
}
// SendComplex128s sends values to processor toID with given tag
func (o *Communicator) SendComplex128s(vals []complex128, toID int, tag int) {
buf := unsafe.Pointer(&vals[0])
C.MPI_Send(buf, C.int(len(vals)), dataTypes[Complex], C.int(toID), C.int(tag), o.comm)
}
// RecvPreallocComplex128s receives values from processor fromId with given tag
func (o *Communicator) RecvPreallocComplex128s(vals []complex128, fromID int, tag int) Status {
buf := unsafe.Pointer(&vals[0])
status := Status{}
C.MPI_Recv(buf, C.int(len(vals)), dataTypes[Complex], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return status
}
// RecvComplex128s returns a slice of `complex128`s received from processor fromId with given tag.
func (o *Communicator) RecvComplex128s(fromID int, tag int) ([]complex128, Status) {
l := o.Probe(fromID, tag).GetCount(Complex)
buf := make([]complex128, l)
status := o.RecvPreallocComplex128s(buf, fromID, tag)
return buf, status
}
//////////////////////////////////////////////////////////////////////////////
// SendByte sends one byte to processor toID with given tag
func (o *Communicator) SendByte(v byte, toID int, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Byte], C.int(toID), C.int(tag), o.comm)
}
// RecvByte receives one byte from processor fromId with given tag
func (o *Communicator) RecvByte(fromID, tag int) (byte, Status) {
var v byte
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Byte], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendUint sends one `uint` to processor toID with given tag
func (o *Communicator) SendUint32(v uint32, toID int, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Uint], C.int(toID), C.int(tag), o.comm)
}
// RecvUint receives one `uint` from processor fromId with given tag
func (o *Communicator) RecvUint32(fromID, tag int) (uint32, Status) {
var v uint32
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Uint], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendInt sends one `int` to processor toID with given tag
func (o *Communicator) SendInt32(v int32, toID int, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Int], C.int(toID), C.int(tag), o.comm)
}
// RecvInt receives one `int` from processor fromId with given tag
func (o *Communicator) RecvInt32(fromID, tag int) (int32, Status) {
var v int32
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Int], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendUint32 sends one `uint32` to processor toID with given tag
func (o *Communicator) SendUint64(v uint64, toID int, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Ulong], C.int(toID), C.int(tag), o.comm)
}
// RecvUlong receives one `uint32` from processor fromId with given tag
func (o *Communicator) RecvUint64(fromID, tag int) (uint64, Status) {
var v uint64
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Ulong], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendLong sends one `int64` to processor toID with given tag
func (o *Communicator) SendInt64(v int64, toID int, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Long], C.int(toID), C.int(tag), o.comm)
}
// RecvLong receives one `int64` from processor fromId with given tag
func (o *Communicator) RecvInt64(fromID, tag int) (int64, Status) {
var v int64
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Long], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendDouble sends one `float64` to processor toID with given tag
func (o *Communicator) SendFloat64(v float64, toID int, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Double], C.int(toID), C.int(tag), o.comm)
}
// RecvDouble receives one `float64` from processor fromId with given tag
func (o *Communicator) RecvFloat64(fromID, tag int) (float64, Status) {
var v float64
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Double], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendComplex128 sends one `complex128` to processor toID (integer version)
func (o *Communicator) SendComplex128(v complex128, toID, tag int) {
buf := unsafe.Pointer(&v)
C.MPI_Send(buf, 1, dataTypes[Complex], C.int(toID), C.int(tag), o.comm)
}
// RecvComplex128 receives one `complex128` from processor fromId
func (o *Communicator) RecvComplex128(fromID, tag int) (complex128, Status) {
var v complex128
buf := unsafe.Pointer(&v)
status := Status{}
C.MPI_Recv(buf, 1, dataTypes[Complex], C.int(fromID), C.int(tag), o.comm, &(status.mpiStatus))
return v, status
}
// SendString is a convenience function to send one string to processor toID with given tag.
func (o *Communicator) SendString(s string, toID, tag int) {
o.SendBytes([]byte(s), toID, tag)
}
// RecvString is a convenience function to receive a string from processor fromId with given tag.
func (o *Communicator) RecvString(fromID, tag int) (string, Status) {
recv_bytes, status := o.RecvBytes(fromID, tag)
return string(recv_bytes), status
}
// IProbe will return a boolean indicating whether a message is
// waiting from a source with a given tag, and a status structure.
func (o *Communicator) Iprobe(source, tag int) (bool, *Status) {
var s Status
var b C.int
C.MPI_Iprobe(C.int(source), C.int(tag), o.comm, &b, &(s.mpiStatus))
return b == 1, &s
}