-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgenerate_images.py
402 lines (337 loc) · 16.4 KB
/
generate_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# -*- coding: utf-8 -*-
# Licensed under the MIT License
# Copyright (c) 2021 Katherine Crowson
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
VQGAN+CLIP
Original file is located at
https://colab.research.google.com/drive/17dZl__DaU2kYelWwbtygn-jSeepzO0Bw
Simplified version is located at
https://colab.research.google.com/drive/17dZl__DaU2kYelWwbtygn-jSeepzO0Bw?usp=sharing
**Download pre-trained models:**
get_models.py (--list | --all | -d (<model name>)+)
"""
from extra import *
from subprocess import Popen, PIPE
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return ReplaceGrad.apply(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * ReplaceGrad.apply(dists, torch.maximum(dists, self.stop)).mean()
def parse_prompt(prompt):
vals = prompt.rsplit(':', 2)
vals = vals + ['', '1', '-inf'][len(vals):]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
# K.RandomSolarize(0.01, 0.01, p=0.7),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),)
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
return image.resize(size, Image.LANCZOS)
def synth(z, model):
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
return ClampWithGrad.apply(model.decode(z_q).add(1).div(2), 0, 1)
def create_video(last_frame, experiment_folder, seconds=15):
"""Generar video del proceso resultante"""
init_frame = 1 #Este es el frame donde el vídeo empezará
#last_frame = i #Puedes cambiar i a el número del último frame que quieres generar. It will raise an error if that number of frames does not exist.
experiment_folder = Path(experiment_folder)
min_fps = 10
max_fps = 30
total_frames = last_frame-init_frame
length = seconds #Tiempo deseado del vídeo en segundos
frames = []
for i in tqdm(range(init_frame,last_frame), total=total_frames, desc="Procesando frames"): #
frames.append(Image.open(experiment_folder / "steps" / f"{str(i).zfill(3)}.png"))
#fps = last_frame/10
fps = np.clip(total_frames/length,min_fps,max_fps)
p = Popen(['ffmpeg', '-y', '-f', 'image2pipe', '-vcodec', 'png', '-r',\
str(fps), '-i', '-', '-vcodec', 'libx264', '-r', str(fps), '-pix_fmt',\
'yuv420p', '-crf', '17', '-preset', 'veryslow', experiment_folder / 'video.mp4'],\
stdin=PIPE)
for im in tqdm(frames, desc="Asignando frames"):
im.save(p.stdin, 'PNG')
p.stdin.close()
p.wait()
def to_experiment_name(prompts):
return " ".join(prompts).strip().replace(".", " ")\
.replace("-", " ").replace(",", " ")\
.replace(" ", "_")
def generate_images(
prompts, model, outputs_folder, models_folder, iterations=300, image_prompts=[],
noise_prompt_seeds=[], noise_prompt_weights=[], size=[300, 300],
init_image=None, init_weight=0., clip_model='ViT-B/32',
step_size=0.1, cutn=64, cut_pow=1., display_freq=5, seed=None,
overwrite=False
):
model_name = model
experiment_name = to_experiment_name(prompts)
experiment_folder = Path(outputs_folder) / experiment_name
os.makedirs(experiment_folder, exist_ok=overwrite)
os.makedirs(experiment_folder / "steps", exist_ok=overwrite)
vqgan_config = Path(models_folder)/f'{model_name}.yaml'
vqgan_checkpoint = Path(models_folder)/f'{model_name}.ckpt'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
model = load_vqgan_model(vqgan_config, vqgan_checkpoint).to(device)
perceptor = clip.load(clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
cut_size = perceptor.visual.input_resolution
e_dim = model.quantize.e_dim
f = 2**(model.decoder.num_resolutions - 1)
make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)
n_toks = model.quantize.n_e
toksX, toksY = size[0] // f, size[1] // f
sideX, sideY = toksX * f, toksY * f
z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
if seed is not None:
torch.manual_seed(seed)
if init_image:
pil_image = Image.open(init_image).convert('RGB')
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
z, *_ = model.encode(TF.to_tensor(pil_image).to(device).unsqueeze(0) * 2 - 1)
else:
one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
z_orig = z.clone()
z.requires_grad_(True)
opt = optim.Adam([z], lr=step_size)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
pMs = []
for prompt in prompts:
txt, weight, stop = parse_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for prompt in image_prompts:
path, weight, stop = parse_prompt(prompt)
img = resize_image(Image.open(path).convert('RGB'), (sideX, sideY))
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
embed = perceptor.encode_image(normalize(batch)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for seed, weight in zip(noise_prompt_seeds, noise_prompt_weights):
gen = torch.Generator().manual_seed(seed)
embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
pMs.append(Prompt(embed, weight).to(device))
@torch.no_grad()
def checkin(z, i, losses, iterations, experiment_folder):
out = synth(z, model)
TF.to_pil_image(out[0].cpu()).save(experiment_folder / 'progress.png')
def ascend_txt(pMs, z, i, init_weight, experiment_folder):
out = synth(z, model)
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
result = []
if init_weight:
result.append(F.mse_loss(z, z_orig) * init_weight / 2)
for prompt in pMs:
result.append(prompt(iii))
img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
img = np.transpose(img, (1, 2, 0))
imageio.imwrite(experiment_folder / 'steps'/ f"{str(i).zfill(3)}.png", np.array(img))
return result
def train(pMs, z, i, init_weight, display_freq, iterations, experiment_folder):
opt.zero_grad()
lossAll = ascend_txt(pMs, z, i, init_weight, experiment_folder)
if i % display_freq == 0: checkin(z, i, lossAll, iterations, experiment_folder)
loss = sum(lossAll)
loss.backward()
opt.step()
with torch.no_grad():
z.copy_(z.maximum(z_min).minimum(z_max))
try:
for i in tqdm(range(iterations), total=iterations, desc="Training"):
train(pMs, z, i, init_weight, display_freq, iterations, experiment_folder)
except KeyboardInterrupt:
print("Aborted")
return i
if __name__ == "__main__":
import argparse
ap = argparse.ArgumentParser(description="Generate Images with VQGAN+CLIP.")
ap.add_argument("-m", "--model", default="vqgan_imagenet_f16_1024", type=str,
choices=['vqgan_imagenet_f16_1024', 'vqgan_imagenet_f16_16384', 'coco', 'faceshq', 'wikiart', 'sflckr'],
help="Pretrained model. Check get_models.py.")
gp = ap.add_mutually_exclusive_group(required=True)
gp.add_argument("-i", "--prompts", nargs="+", type=str,
help="Input text.")
gp.add_argument('--it', dest='interactive', action='store_true',
help="Use prompt from user input.")
ap.add_argument("-o", "--outputs_folder", required=False, type=str,
help="Outputs folder.", default="/tf/outputs")
ap.add_argument("-M", "--models_folder", required=False, type=str,
help="Models folder.", default="/tf/models")
ap.add_argument("--iterations", required=False, type=int,
help="Number of iterations.", default=200)
ap.add_argument("--image_prompts", nargs="*", type=str,
help="Input images.", default=[])
ap.add_argument("--noise_prompt_seeds", nargs="*", type=int,
help="Noise prompt seeds.", default=[])
ap.add_argument("--noise_prompt_weights", nargs="*", type=float,
help="Noise prompt weights.", default=[])
ap.add_argument("--size", nargs=2, type=int,
help="Resulting image size.", default=[300, 300])
ap.add_argument("--init_image", type=str,
help="Input initial image.", default=None)
ap.add_argument("--init_weight", type=float,
help="Input initial weight.", default=0.)
ap.add_argument("--clip_model", type=str,
help="CLIP model.", default='ViT-B/32')
ap.add_argument("--step_size", type=float,
help="Step size.", default=0.1)
ap.add_argument("--cutn", type=int,
help="cutn.", default=64)
ap.add_argument("--cut_pow", type=float,
help="cut_pow.", default=1.)
ap.add_argument("--display_freq", type=int,
help="Display frequency.", default=5)
ap.add_argument("--seed", type=int,
help="Seed.", default=None)
ap.add_argument('--overwrite', dest='overwrite', action='store_true')
ap.add_argument('--save_video', dest='save_video', action='store_true',
help="Save video.")
ap.add_argument('--video_seconds', type=int,
help="Lenght of video", default=15)
kwargs = vars(ap.parse_args())
# Options
if kwargs["interactive"]:
prompts = []
while True:
txt = input("Add prompt or press enter to continue: ")
if not txt: break
prompts.append(txt)
if len(prompts) == 0: raise ValueError("Empty prompts.")
kwargs["prompts"] = prompts
del kwargs["interactive"]
# Save video parameters
save_video = kwargs["save_video"]
video_seconds = kwargs["video_seconds"]
del kwargs["save_video"]
del kwargs["video_seconds"]
# Run GAN
last_frame_index = generate_images(**kwargs)
# Save Video
if save_video:
outputs_folder = kwargs["outputs_folder"]
prompts = kwargs["prompts"]
experiment_name = to_experiment_name(prompts)
experiment_folder = Path(outputs_folder) / experiment_name
create_video(last_frame_index, Path(experiment_folder), video_seconds)