We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
複数GPU使用時、cacheを利用した場合としない場合でclassification taskのスコアが異なる、という問題が起こっています。
https://github.com/sbintuitions/JMTEB/tree/dev
下記の2コマンドでで JMTEBを評価
実験1
torchrun --nproc-per-node 8\ src/jmteb/__main__.py \ --embedder TransformersEmbedder \ --embedder.model_name_or_path "$model" \ --embedder.normalize_embeddings False \ --embedder.max_seq_length 512 \ --embedder.batch_size 64 \ --save_dir $model/jmteb_evaluation \ --embedder.model_kwargs '{"torch_dtype":"torch.bfloat16"}' \ --overwrite_cache true \ --evaluators src/jmteb/configs/jmteb.jsonnet
実験1に続いて、実験1のcacheを利用して実験2を実施
実験2 (バッチサイズ 64→16, overwrite_cache true→false)
torchrun --nproc-per-node 8\ src/jmteb/__main__.py \ --embedder TransformersEmbedder \ --embedder.model_name_or_path "$model" \ --embedder.normalize_embeddings False \ --embedder.max_seq_length 512 \ --embedder.batch_size 16 \ --save_dir $model/jmteb_evaluation \ --embedder.model_kwargs '{"torch_dtype":"torch.bfloat16"}' \ --overwrite_cache false \ --evaluators src/jmteb/configs/jmteb.jsonnet
実験1と2でamazon_counterfactual_classification,amazon_review_classificationのスコアが大きく異なる。
amazon_counterfactual_classification
amazon_review_classification
実験1 (キャッシュなし)
{ "metric_name": "macro_f1", "metric_value": 0.8044316348273781, "details": { "optimal_classifier_name": "logreg", "val_scores": { "knn_cosine_k_2": { "accuracy": 0.9184549356223176, "macro_f1": 0.6717093066370041 }, "logreg": { "accuracy": 0.9141630901287554, "macro_f1": 0.7540248086566377 } }, "test_scores": { "logreg": { "accuracy": 0.9271948608137045, "macro_f1": 0.8044316348273781 } } } }
実験2(キャッシュあり)
{ "metric_name": "macro_f1", "metric_value": 0.6258438858598253, "details": { "optimal_classifier_name": "knn_cosine_k_2", "val_scores": { "knn_cosine_k_2": { "accuracy": 0.9163090128755365, "macro_f1": 0.6680366047454656 }, "logreg": { "accuracy": 0.9012875536480687, "macro_f1": 0.47404063205417607 } }, "test_scores": { "knn_cosine_k_2": { "accuracy": 0.8982869379014989, "macro_f1": 0.6258438858598253 } } } }
実験1(cacheなし)
{ "metric_name": "macro_f1", "metric_value": 0.6315426985818074, "details": { "optimal_classifier_name": "logreg", "val_scores": { "knn_cosine_k_2": { "accuracy": 0.4866, "macro_f1": 0.47608787259379304 }, "logreg": { "accuracy": 0.64, "macro_f1": 0.636986907686679 } }, "test_scores": { "logreg": { "accuracy": 0.6342, "macro_f1": 0.6315426985818074 } } } }
{ "metric_name": "macro_f1", "metric_value": 0.4944960931963851, "details": { "optimal_classifier_name": "knn_cosine_k_2", "val_scores": { "knn_cosine_k_2": { "accuracy": 0.4916, "macro_f1": 0.48080999105915334 }, "logreg": { "accuracy": 0.2, "macro_f1": 0.06666666666666667 } }, "test_scores": { "knn_cosine_k_2": { "accuracy": 0.5028, "macro_f1": 0.4944960931963851 } } } }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
複数GPU使用時、cacheを利用した場合としない場合でclassification taskのスコアが異なる、という問題が起こっています。
起こっている問題
実行環境
https://github.com/sbintuitions/JMTEB/tree/dev
を使用実行したこと
下記の2コマンドでで JMTEBを評価
実験1
実験1に続いて、実験1のcacheを利用して実験2を実施
実験2 (バッチサイズ 64→16, overwrite_cache true→false)
結果
実験1と2で
amazon_counterfactual_classification
,amazon_review_classification
のスコアが大きく異なる。amazon_counterfactual_classification
実験1 (キャッシュなし)
実験2(キャッシュあり)
amazon_review_classification
実験1(cacheなし)
実験2(キャッシュあり)
The text was updated successfully, but these errors were encountered: