diff --git a/docs/results/sbintuitions/sarashina-embedding-v1-1b/summary.json b/docs/results/sbintuitions/sarashina-embedding-v1-1b/summary.json
new file mode 100644
index 0000000..30385ec
--- /dev/null
+++ b/docs/results/sbintuitions/sarashina-embedding-v1-1b/summary.json
@@ -0,0 +1,62 @@
+{
+ "Classification": {
+ "amazon_counterfactual_classification": {
+ "macro_f1": 0.7910202863961814
+ },
+ "amazon_review_classification": {
+ "macro_f1": 0.614759364446128
+ },
+ "massive_intent_classification": {
+ "macro_f1": 0.8225880728874561
+ },
+ "massive_scenario_classification": {
+ "macro_f1": 0.9065030576701741
+ }
+ },
+ "Reranking": {
+ "esci": {
+ "ndcg@10": 0.9374394712541568
+ }
+ },
+ "Retrieval": {
+ "jagovfaqs_22k": {
+ "ndcg@10": 0.7168374490004555
+ },
+ "jaqket": {
+ "ndcg@10": 0.7279485535689915
+ },
+ "mrtydi": {
+ "ndcg@10": 0.41952210141116814
+ },
+ "nlp_journal_abs_intro": {
+ "ndcg@10": 0.9394095717236127
+ },
+ "nlp_journal_title_abs": {
+ "ndcg@10": 0.9695624263086593
+ },
+ "nlp_journal_title_intro": {
+ "ndcg@10": 0.8832876426024624
+ }
+ },
+ "STS": {
+ "jsick": {
+ "spearman": 0.8022484725822061
+ },
+ "jsts": {
+ "spearman": 0.851980317221987
+ }
+ },
+ "Clustering": {
+ "livedoor_news": {
+ "v_measure_score": 0.5641831341687762
+ },
+ "mewsc16": {
+ "v_measure_score": 0.5129216698739159
+ }
+ },
+ "PairClassification": {
+ "paws_x_ja": {
+ "binary_f1": 0.62
+ }
+ }
+}
\ No newline at end of file
diff --git a/leaderboard.md b/leaderboard.md
index ccd9236..dd64309 100644
--- a/leaderboard.md
+++ b/leaderboard.md
@@ -7,8 +7,9 @@ The summary shows the average scores within each task. The average score is the
| Model | Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
|:----------------------------------------------|:----------|:------------|:----------|:-----------------|:------------|:-------------|:---------------------|
-| OpenAI/text-embedding-3-large | **74.05** | 74.48 | 82.52 | **77.58** | **93.58** | 53.32 | 62.35 |
-| jinaai/jina-embeddings-v3 | 73.44 | **75.22** | 80.05 | 76.39 | 92.71 | 51.46 | 62.37 |
+| sbintuitions/sarashina-embedding-v1-1b | **75.50** | **77.61** | 82.71 | **78.37** | **93.74** | 53.86 | 62.00 |
+| OpenAI/text-embedding-3-large | 74.05 | 74.48 | 82.52 | 77.58 | 93.58 | 53.32 | 62.35 |
+| jinaai/jina-embeddings-v3 | 73.44 | 75.22 | 80.05 | 76.39 | 92.71 | 51.46 | 62.37 |
| cl-nagoya/ruri-large | 73.31 | 73.02 | 83.13 | 77.43 | 92.99 | 51.82 | 62.29 |
| pkshatech/GLuCoSE-base-ja-v2 | 72.23 | 73.36 | 82.96 | 74.21 | 93.01 | 48.65 | 62.37 |
| pkshatech/RoSEtta-base-ja | 72.04 | 73.21 | 81.39 | 72.41 | 92.69 | 53.23 | 61.74 |
@@ -39,9 +40,10 @@ The summary shows the average scores within each task. The average score is the
## Retrieval
| Model | Avg. | jagovfaqs_22k
(ndcg@10) | jaqket
(ndcg@10) | mrtydi
(ndcg@10) | nlp_journal_abs_intro
(ndcg@10) | nlp_journal_title_abs
(ndcg@10) | nlp_journal_title_intro
(ndcg@10) |
|:----------------------------------------------|:----------|:-----------------------------|:----------------------|:----------------------|:-------------------------------------|:-------------------------------------|:---------------------------------------|
-| jinaai/jina-embeddings-v3 | **75.22** | 71.50 | 46.48 | **45.45** | 98.43 | 95.62 | 93.85 |
+| sbintuitions/sarashina-embedding-v1-1b | **77.61** | 71.68 | **72.79** | 41.95 | 93.94 | 96.96 | 88.33 |
+| jinaai/jina-embeddings-v3 | 75.22 | 71.50 | 46.48 | **45.45** | 98.43 | 95.62 | 93.85 |
| OpenAI/text-embedding-3-large | 74.48 | 72.41 | 48.21 | 34.88 | **99.33** | 96.55 | **95.47** |
-| pkshatech/GLuCoSE-base-ja-v2 | 73.36 | 69.79 | **67.29** | 41.86 | 90.29 | 95.11 | 75.80 |
+| pkshatech/GLuCoSE-base-ja-v2 | 73.36 | 69.79 | 67.29 | 41.86 | 90.29 | 95.11 | 75.80 |
| pkshatech/RoSEtta-base-ja | 73.21 | 65.96 | 65.33 | 36.73 | 95.54 | 94.08 | 81.63 |
| cl-nagoya/ruri-large | 73.02 | **76.68** | 61.74 | 38.03 | 87.12 | 96.58 | 77.97 |
| intfloat/multilingual-e5-large | 70.98 | 70.30 | 58.78 | 43.63 | 86.00 | 94.70 | 72.48 |
@@ -72,10 +74,11 @@ The summary shows the average scores within each task. The average score is the
| Model | Avg. | jsick
(spearman) | jsts
(spearman) |
|:----------------------------------------------|:----------|:----------------------|:---------------------|
| cl-nagoya/sup-simcse-ja-large | **83.18** | 83.80 | 82.57 |
-| cl-nagoya/ruri-large | 83.13 | 82.00 | **84.26** |
+| cl-nagoya/ruri-large | 83.13 | 82.00 | 84.26 |
| pkshatech/GLuCoSE-base-ja-v2 | 82.96 | **84.96** | 80.96 |
| cl-nagoya/ruri-base | 82.87 | 82.32 | 83.43 |
| cl-nagoya/ruri-small | 82.79 | 83.44 | 82.13 |
+| sbintuitions/sarashina-embedding-v1-1b | 82.71 | 80.22 | **85.20** |
| OpenAI/text-embedding-3-large | 82.52 | 81.27 | 83.77 |
| cl-nagoya/sup-simcse-ja-base | 82.05 | 82.83 | 81.27 |
| pkshatech/RoSEtta-base-ja | 81.39 | 83.83 | 78.95 |
@@ -103,7 +106,8 @@ The summary shows the average scores within each task. The average score is the
## Classification
| Model | Avg. | amazon_counterfactual
(macro_f1) | amazon_review
(macro_f1) | massive_intent
(macro_f1) | massive_scenario
(macro_f1) |
|:----------------------------------------------|:----------|:--------------------------------------|:------------------------------|:-------------------------------|:---------------------------------|
-| OpenAI/text-embedding-3-large | **77.58** | 77.90 | **60.44** | 80.91 | **91.08** |
+| sbintuitions/sarashina-embedding-v1-1b | **78.37** | 79.10 | **61.48** | 82.26 | 90.65 |
+| OpenAI/text-embedding-3-large | 77.58 | 77.90 | 60.44 | 80.91 | **91.08** |
| cl-nagoya/ruri-large | 77.43 | 80.81 | 56.80 | **82.56** | 89.56 |
| pkshatech/GLuCoSE-base-ja | 76.82 | **82.44** | 58.07 | 78.85 | 87.94 |
| oshizo/sbert-jsnli-luke-japanese-base-lite | 76.61 | 79.95 | 57.48 | 80.26 | 88.75 |
@@ -135,7 +139,8 @@ The summary shows the average scores within each task. The average score is the
## Reranking
| Model | Avg. | esci
(ndcg@10) |
|:----------------------------------------------|:----------|:--------------------|
-| OpenAI/text-embedding-3-large | **93.58** | **93.58** |
+| sbintuitions/sarashina-embedding-v1-1b | **93.74** | **93.74** |
+| OpenAI/text-embedding-3-large | 93.58 | 93.58 |
| OpenAI/text-embedding-ada-002 | 93.04 | 93.04 |
| intfloat/multilingual-e5-small | 93.03 | 93.03 |
| pkshatech/GLuCoSE-base-ja-v2 | 93.01 | 93.01 |
@@ -168,6 +173,7 @@ The summary shows the average scores within each task. The average score is the
| Model | Avg. | livedoor_news
(v_measure_score) | mewsc16
(v_measure_score) |
|:----------------------------------------------|:----------|:-------------------------------------|:-------------------------------|
| cl-nagoya/ruri-base | **54.16** | 54.27 | **54.04** |
+| sbintuitions/sarashina-embedding-v1-1b | 53.86 | 56.42 | 51.29 |
| OpenAI/text-embedding-3-large | 53.32 | 57.09 | 49.55 |
| pkshatech/RoSEtta-base-ja | 53.23 | **58.62** | 47.85 |
| cl-nagoya/ruri-large | 51.82 | 51.39 | 52.25 |
@@ -226,5 +232,6 @@ The summary shows the average scores within each task. The average score is the
| intfloat/multilingual-e5-small | 62.19 | 62.19 |
| intfloat/multilingual-e5-large | 62.15 | 62.15 |
| cl-nagoya/ruri-small | 62.11 | 62.11 |
+| sbintuitions/sarashina-embedding-v1-1b | 62.00 | 62.00 |
| pkshatech/RoSEtta-base-ja | 61.74 | 61.74 |