Skip to content

Commit b07904d

Browse files
committed
README typos
1 parent 4a01a4d commit b07904d

File tree

3 files changed

+15
-15
lines changed

3 files changed

+15
-15
lines changed

R/json_files.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -535,7 +535,7 @@ calculateFitStat <- function(validadedf,
535535

536536
if (nrow(data[[i]] != 0)) {
537537

538-
predictions <- ROCR::prediction(data[[i]][,2],data[[i]][,1], label.ordering = label.ordering)
538+
predictions <- ROCR::prediction(data[[i]][,2],data[[i]][,1], label.ordering = label.ordering)
539539
accuracyRoc <- ROCR::performance(predictions, 'acc')
540540
tpr_fpr <- ROCR::performance(predictions,"tpr","fpr")
541541

README.Rmd

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -232,16 +232,16 @@ diags <- diagnosticsJson(validadedf = scoreddf[scoreddf$partition == 3,],
232232
path = path) ## safely ignore warning, knitr bug
233233
234234
235-
## since R sasctl can't automatically generate an score code, you can use this
236-
## with a sample, which has to be edited manually to the correct.
237-
## for this example you can get the score code sample here: https://gitlab.sas.com/edhell/mm-r-model
235+
## since R sasctl can't automatically generate an score code (yet), you can use
236+
## this function to create a sample, which has to be edited manually to work properly
237+
238238
create_scoreSample(path,
239239
openFile = FALSE)
240240
241-
#
241+
242+
## writing other files
242243
write_in_out_json(hmeq[,-1], input = TRUE, path = path)
243244
244-
## we don't need the partition info
245245
write_in_out_json(scoreddf[-4], input = FALSE, path = path)
246246
247247
write_fileMetadata_json(scoreCodeName = "scoreCode.R",

README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -12,10 +12,10 @@
1212
2. [Installation](#installation)
1313
3. [Session](#session)
1414
4. [Examples](#examples)
15-
- [PMML to SAS Example](#pmml-to-sas-example)
16-
- [A native R model example](#a-native-r-model-example)
17-
- [vPOST and vGET convenient
18-
functions](#vpost-and-vget-convenient-functions)
15+
- [PMML to SAS Example](#pmml-to-sas-example)
16+
- [A native R model example](#a-native-r-model-example)
17+
- [vPOST and vGET convenient
18+
functions](#vpost-and-vget-convenient-functions)
1919
5. [Model Management helpers](#model-management-helpers)
2020

2121
## Overview
@@ -214,16 +214,16 @@ diags <- diagnosticsJson(validadedf = scoreddf[scoreddf$partition == 3,],
214214
path = path) ## safely ignore warning, knitr bug
215215

216216

217-
## since R sasctl can't automatically generate an score code, you can use this
218-
## with a sample, which has to be edited manually to the correct.
219-
## for this example you can get the score code sample here: https://gitlab.sas.com/edhell/mm-r-model
217+
## since R sasctl can't automatically generate an score code (yet), you can use
218+
## this function to create a sample, which has to be edited manually to work properly
219+
220220
create_scoreSample(path,
221221
openFile = FALSE)
222222

223-
#
223+
224+
## writing other files
224225
write_in_out_json(hmeq[,-1], input = TRUE, path = path)
225226

226-
## we don't need the partition info
227227
write_in_out_json(scoreddf[-4], input = FALSE, path = path)
228228

229229
write_fileMetadata_json(scoreCodeName = "scoreCode.R",

0 commit comments

Comments
 (0)