|
12 | 12 | 2. [Installation](#installation)
|
13 | 13 | 3. [Session](#session)
|
14 | 14 | 4. [Examples](#examples)
|
15 |
| - - [PMML to SAS Example](#pmml-to-sas-example) |
16 |
| - - [A native R model example](#a-native-r-model-example) |
17 |
| - - [vPOST and vGET convenient |
18 |
| - functions](#vpost-and-vget-convenient-functions) |
| 15 | + - [PMML to SAS Example](#pmml-to-sas-example) |
| 16 | + - [A native R model example](#a-native-r-model-example) |
| 17 | + - [vPOST and vGET convenient |
| 18 | + functions](#vpost-and-vget-convenient-functions) |
19 | 19 | 5. [Model Management helpers](#model-management-helpers)
|
20 | 20 |
|
21 | 21 | ## Overview
|
@@ -214,16 +214,16 @@ diags <- diagnosticsJson(validadedf = scoreddf[scoreddf$partition == 3,],
|
214 | 214 | path = path) ## safely ignore warning, knitr bug
|
215 | 215 |
|
216 | 216 |
|
217 |
| -## since R sasctl can't automatically generate an score code, you can use this |
218 |
| -## with a sample, which has to be edited manually to the correct. |
219 |
| -## for this example you can get the score code sample here: https://gitlab.sas.com/edhell/mm-r-model |
| 217 | +## since R sasctl can't automatically generate an score code (yet), you can use |
| 218 | +## this function to create a sample, which has to be edited manually to work properly |
| 219 | + |
220 | 220 | create_scoreSample(path,
|
221 | 221 | openFile = FALSE)
|
222 | 222 |
|
223 |
| -# |
| 223 | + |
| 224 | +## writing other files |
224 | 225 | write_in_out_json(hmeq[,-1], input = TRUE, path = path)
|
225 | 226 |
|
226 |
| -## we don't need the partition info |
227 | 227 | write_in_out_json(scoreddf[-4], input = FALSE, path = path)
|
228 | 228 |
|
229 | 229 | write_fileMetadata_json(scoreCodeName = "scoreCode.R",
|
|
0 commit comments