-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_mis_1_results.py
179 lines (159 loc) · 8.7 KB
/
process_mis_1_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import json
from collections import defaultdict
import numpy as np
# Read the JSON file
with open('results_mis_1.txt') as f:
data = json.load(f)
variances, errors, std_devs, mis_estimate_differences = defaultdict(lambda: defaultdict(list)), defaultdict(lambda: defaultdict(list)), defaultdict(lambda: defaultdict(list)), defaultdict(lambda: defaultdict(list))
# Iterating through the JSON data to extract the necessary statistics
for test in data.values():
quad_result = test['test_values']['quad_result']
for heuristic, sample_data in test.items():
if heuristic == 'test_values':
continue # Skipping the 'test_values' section
for sample_size, stats in sample_data.items():
variances[heuristic][sample_size].append(stats['mean of variances'])
errors[heuristic][sample_size].append(stats['mean of errors'])
std_devs[heuristic][sample_size].append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
mis_estimate_differences[heuristic][sample_size].append(difference)
# Calculating the means for each heuristic and sample size
mean_variances = {heuristic: {size: np.mean(values) for size, values in sizes.items()} for heuristic, sizes in variances.items()}
mean_errors = {heuristic: {size: np.mean(values) for size, values in sizes.items()} for heuristic, sizes in errors.items()}
mean_std_devs = {heuristic: {size: np.mean(values) for size, values in sizes.items()} for heuristic, sizes in std_devs.items()}
mean_mis_estimate_differences = {heuristic: {size: np.mean(values) for size, values in sizes.items()} for heuristic, sizes in mis_estimate_differences.items()}
# Printing the means
print("Analysis of the results per heuristic and sample size:")
print('Mean of variances:')
print(mean_variances)
print('Mean of errors:')
print(mean_errors)
print('Mean of standard deviations:')
print(mean_std_devs)
print('Mean of mis estimate differences:')
print(mean_mis_estimate_differences)
print("*" * 10)
# Iterate through tests
print("Analysis of the results per heuristic in each test:")
for i, test in enumerate(data.values()):
variances, errors, std_devs, mis_estimate_differences = defaultdict(list), defaultdict(list), defaultdict(list), defaultdict(list)
quad_result = test['test_values']['quad_result']
for heuristic, sample_data in test.items():
if heuristic == 'test_values':
continue
for sample_size, stats in sample_data.items():
variances[heuristic].append(stats['mean of variances'])
errors[heuristic].append(stats['mean of errors'])
std_devs[heuristic].append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
mis_estimate_differences[heuristic].append(difference)
# Calculating the means for each heuristic and sample size
mean_variances = {heuristic: np.mean(values) for heuristic, values in variances.items()}
mean_errors = {heuristic: np.mean(values) for heuristic, values in errors.items()}
mean_std_devs = {heuristic: np.mean(values) for heuristic, values in std_devs.items()}
mean_mis_estimate_differences = {heuristic: np.mean(values) for heuristic, values in mis_estimate_differences.items()}
print('Test: ', i + 1)
print('Mean of variances:')
print(mean_variances)
print('Mean of errors:')
print(mean_errors)
print('Mean of standard deviations:')
print(mean_std_devs)
print('Mean of mis estimate differences:')
print(mean_mis_estimate_differences)
print("*" * 10)
# Iterating through heuristics
print("Analysis of the results per heuristic:")
balance_variances, balance_errors, balance_std_devs, balance_mis_estimate_differences = [], [], [], []
power_variances, power_errors, power_std_devs, power_mis_estimate_differences = [], [], [], []
maximum_variances, maximum_errors, maximum_std_devs, maximum_mis_estimate_differences = [], [], [], []
cutoff_variances, cutoff_errors, cutoff_std_devs, cutoff_mis_estimate_differences = [], [], [], []
sbert_variances, sbert_errors, sbert_std_devs, sbert_mis_estimate_differences = [], [], [], []
for test in data.values():
quad_result = test['test_values']['quad_result']
for heuristic, sample_data in test.items():
if heuristic == 'test_values':
continue
for sample_size, stats in sample_data.items():
if heuristic == 'balance':
balance_variances.append(stats['mean of variances'])
balance_errors.append(stats['mean of errors'])
balance_std_devs.append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
balance_mis_estimate_differences.append(difference)
elif heuristic == 'power':
power_variances.append(stats['mean of variances'])
power_errors.append(stats['mean of errors'])
power_std_devs.append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
power_mis_estimate_differences.append(difference)
elif heuristic == 'maximum':
maximum_variances.append(stats['mean of variances'])
maximum_errors.append(stats['mean of errors'])
maximum_std_devs.append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
maximum_mis_estimate_differences.append(difference)
elif heuristic == 'cutoff':
cutoff_variances.append(stats['mean of variances'])
cutoff_errors.append(stats['mean of errors'])
cutoff_std_devs.append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
cutoff_mis_estimate_differences.append(difference)
elif heuristic == 'sbert':
sbert_variances.append(stats['mean of variances'])
sbert_errors.append(stats['mean of errors'])
sbert_std_devs.append(stats['mean of standard deviations'])
mis_estimate = stats['mean of mis estimate']
difference = abs(mis_estimate - quad_result)
sbert_mis_estimate_differences.append(difference)
# Calculating the means for each heuristic and sample size
mean_balance_variances = np.mean(balance_variances)
mean_balance_errors = np.mean(balance_errors)
mean_balance_std_devs = np.mean(balance_std_devs)
mean_balance_mis_estimate_differences = np.mean(balance_mis_estimate_differences)
mean_power_variances = np.mean(power_variances)
mean_power_errors = np.mean(power_errors)
mean_power_std_devs = np.mean(power_std_devs)
mean_power_mis_estimate_differences = np.mean(power_mis_estimate_differences)
mean_maximum_variances = np.mean(maximum_variances)
mean_maximum_errors = np.mean(maximum_errors)
mean_maximum_std_devs = np.mean(maximum_std_devs)
mean_maximum_mis_estimate_differences = np.mean(maximum_mis_estimate_differences)
mean_cutoff_variances = np.mean(cutoff_variances)
mean_cutoff_errors = np.mean(cutoff_errors)
mean_cutoff_std_devs = np.mean(cutoff_std_devs)
mean_cutoff_mis_estimate_differences = np.mean(cutoff_mis_estimate_differences)
mean_sbert_variances = np.mean(sbert_variances)
mean_sbert_errors = np.mean(sbert_errors)
mean_sbert_std_devs = np.mean(sbert_std_devs)
mean_sbert_mis_estimate_differences = np.mean(sbert_mis_estimate_differences)
print('Mean of variances:')
print('balance: ', mean_balance_variances)
print('power: ', mean_power_variances)
print('maximum: ', mean_maximum_variances)
print('cutoff: ', mean_cutoff_variances)
print('sbert: ', mean_sbert_variances)
print('Mean of errors:')
print('balance: ', mean_balance_errors)
print('power: ', mean_power_errors)
print('maximum: ', mean_maximum_errors)
print('cutoff: ', mean_cutoff_errors)
print('sbert: ', mean_sbert_errors)
print('Mean of standard deviations:')
print('balance: ', mean_balance_std_devs)
print('power: ', mean_power_std_devs)
print('maximum: ', mean_maximum_std_devs)
print('cutoff: ', mean_cutoff_std_devs)
print('sbert: ', mean_sbert_std_devs)
print('Mean of mis estimate differences:')
print('balance: ', mean_balance_mis_estimate_differences)
print('power: ', mean_power_mis_estimate_differences)
print('maximum: ', mean_maximum_mis_estimate_differences)
print('cutoff: ', mean_cutoff_mis_estimate_differences)
print('sbert: ', mean_sbert_mis_estimate_differences)