-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReceiver code.c
363 lines (315 loc) · 9.42 KB
/
Receiver code.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#include <stdio.h>
#include <windows.h>
#include <math.h>
#pragma comment(lib, "winmm.lib")
#define AUDIO_BITS_PER_SAMPLE 16
#define AUDIO_SAMPLE_RATE 8000
#define TRANSMISSION_START_FREQUENCY 2000
#define BIT_TONE_FREQUENCY_ON 600
#define BIT_TONE_FREQUENCY_OFF 800
#define TRANSMISSION_END_FREQUENCY 1500
#define BIT_TONE_FREQUENCY_NEXT 1200
#define TONE_THRESHOLD 500
DWORD dwGlobal_TransmissionStarted = 0;
DWORD dwGlobal_BitsReceived = 0;
BYTE bGlobal_RecvBits[8];
DWORD dwGlobal_LastToneType = 0;
// 1 second audio buffer
BYTE bGlobal_AudioBuffer[AUDIO_SAMPLE_RATE * sizeof(WORD)];
double CalculateToneMagnitude(short *pSamples, DWORD dwSampleCount, DWORD dwTargetFrequency)
{
DWORD dwK = 0;
double dScalingFactor = 0;
double dW = 0;
double dSine = 0;
double dCosine = 0;
double dCoeff = 0;
double dQ0 = 0;
double dQ1 = 0;
double dQ2 = 0;
double dMagnitude = 0;
// set initial values for goertzel algorithm
dScalingFactor = (double)dwSampleCount / 2.0;
dwK = (DWORD)(0.5 + (((double)dwSampleCount * (double)dwTargetFrequency) / AUDIO_SAMPLE_RATE));
dW = (2.0 * 3.14159 * (double)dwK) / (double)dwSampleCount;
dSine = sin(dW);
dCosine = cos(dW);
dCoeff = 2.0 * dCosine;
// process all samples
for(DWORD i = 0; i < dwSampleCount; i++)
{
// process current sample
dQ0 = (dCoeff * dQ1) - dQ2 + pSamples[i];
dQ2 = dQ1;
dQ1 = dQ0;
}
// calculate magnitude
dMagnitude = (double)sqrtf((float)((dQ1 * dQ1) + (dQ2 * dQ2) - (dQ1 * dQ2 * dCoeff)));
dMagnitude /= 100;
return dMagnitude;
}
DWORD ProcessSamples()
{
BYTE bRecvByte = 0;
DWORD dwSamplesRemaining = 0;
DWORD dwCurrSampleIndex = 0;
DWORD dwCurrChunkSize = 0;
short *pCurrSamplePtr = NULL;
double dFrequencySignal_TransmissionStart = 0;
double dFrequencySignal_TransmissionStart2 = 0;
double dFrequencySignal_TransmissionEnd = 0;
double dFrequencySignal_NextBit = 0;
double dFrequencySignal_BitOn = 0;
double dFrequencySignal_BitOff = 0;
double dStrongestTone = 0;
DWORD dwStrongestToneType = 0;
// process current samples
dwSamplesRemaining = sizeof(bGlobal_AudioBuffer) / sizeof(WORD);
dwCurrSampleIndex = 0;
for(;;)
{
// check of all samples have been processed
if(dwSamplesRemaining == 0)
{
// finished
break;
}
// calculate current chunk size (25ms)
dwCurrChunkSize = (AUDIO_SAMPLE_RATE / 40);
if(dwSamplesRemaining < dwCurrChunkSize)
{
dwCurrChunkSize = dwSamplesRemaining;
}
// get current sample position
pCurrSamplePtr = (short*)&bGlobal_AudioBuffer[dwCurrSampleIndex * sizeof(WORD)];
// check if a transmission is already in progress
if(dwGlobal_TransmissionStarted == 0)
{
// no transmission - check if a new one is starting
dFrequencySignal_TransmissionStart = CalculateToneMagnitude(pCurrSamplePtr, dwCurrChunkSize, TRANSMISSION_START_FREQUENCY);
if(dFrequencySignal_TransmissionStart >= TONE_THRESHOLD)
{
// new data transmission detected
dwGlobal_BitsReceived = 0;
dwGlobal_LastToneType = TRANSMISSION_START_FREQUENCY;
dwGlobal_TransmissionStarted = 1;
}
}
else
{
// a transmission is already in progress - get next tone
dFrequencySignal_TransmissionStart = CalculateToneMagnitude(pCurrSamplePtr, dwCurrChunkSize, TRANSMISSION_START_FREQUENCY);
dFrequencySignal_BitOn = CalculateToneMagnitude(pCurrSamplePtr, dwCurrChunkSize, BIT_TONE_FREQUENCY_ON);
dFrequencySignal_BitOff = CalculateToneMagnitude(pCurrSamplePtr, dwCurrChunkSize, BIT_TONE_FREQUENCY_OFF);
dFrequencySignal_NextBit = CalculateToneMagnitude(pCurrSamplePtr, dwCurrChunkSize, BIT_TONE_FREQUENCY_NEXT);
dFrequencySignal_TransmissionEnd = CalculateToneMagnitude(pCurrSamplePtr, dwCurrChunkSize, TRANSMISSION_END_FREQUENCY);
// check for the strongest tone
dStrongestTone = 0;
dwStrongestToneType = 0;
if(dFrequencySignal_TransmissionStart > dStrongestTone)
{
dStrongestTone = dFrequencySignal_TransmissionStart;
dwStrongestToneType = TRANSMISSION_START_FREQUENCY;
}
if(dFrequencySignal_BitOn > dStrongestTone)
{
dStrongestTone = dFrequencySignal_BitOn;
dwStrongestToneType = BIT_TONE_FREQUENCY_ON;
}
if(dFrequencySignal_BitOff > dStrongestTone)
{
dStrongestTone = dFrequencySignal_BitOff;
dwStrongestToneType = BIT_TONE_FREQUENCY_OFF;
}
if(dFrequencySignal_NextBit > dStrongestTone)
{
dStrongestTone = dFrequencySignal_NextBit;
dwStrongestToneType = BIT_TONE_FREQUENCY_NEXT;
}
if(dFrequencySignal_TransmissionEnd > dStrongestTone)
{
dStrongestTone = dFrequencySignal_TransmissionEnd;
dwStrongestToneType = TRANSMISSION_END_FREQUENCY;
}
// ensure at least one frequency is above the minimum threshold
if(dStrongestTone < TONE_THRESHOLD)
{
if(dwGlobal_BitsReceived != 0)
{
printf("\n** DATA CORRUPT - CANCELLED TRANSMISSION **\n");
}
dwGlobal_TransmissionStarted = 0;
}
else
{
// check if the tone has changed
if(dwStrongestToneType != dwGlobal_LastToneType)
{
// new tone detected
if(dwStrongestToneType == TRANSMISSION_START_FREQUENCY)
{
// found "transmission start" tone but already receiving data
if(dwGlobal_BitsReceived != 0)
{
printf("\n** DATA CORRUPT - CANCELLED TRANSMISSION **\n");
}
dwGlobal_TransmissionStarted = 0;
}
else if(dwStrongestToneType != BIT_TONE_FREQUENCY_NEXT)
{
// check if this is a data bit
if(dwStrongestToneType == BIT_TONE_FREQUENCY_ON || dwStrongestToneType == BIT_TONE_FREQUENCY_OFF)
{
if(dwGlobal_BitsReceived == 0)
{
// receiving first data bit
printf("** RECEIVING DATA **\n");
}
// check if the "on" or "off" bit tone is strongest
if(dwStrongestToneType == BIT_TONE_FREQUENCY_ON)
{
// received "1" bit
bGlobal_RecvBits[7 - (dwGlobal_BitsReceived % 8)] = 1;
}
else
{
// received "0" bit
bGlobal_RecvBits[7 - (dwGlobal_BitsReceived % 8)] = 0;
}
// wait for confirmation before reading next bit
dwGlobal_BitsReceived++;
// check if a full byte (8 bits) has been received
if(dwGlobal_BitsReceived % 8 == 0)
{
// convert bits to byte
bRecvByte = 0;
for(DWORD i = 0; i < 8; i++)
{
// convert current bit
bRecvByte |= (bGlobal_RecvBits[i] << i);
}
// print current byte
printf("%c", bRecvByte);
}
}
else if(dwStrongestToneType == TRANSMISSION_END_FREQUENCY)
{
// end of transmission
if(dwGlobal_BitsReceived != 0)
{
printf("\n** END OF TRANSMISSION (received %u bytes) **\n", dwGlobal_BitsReceived / 8);
}
dwGlobal_TransmissionStarted = 0;
}
}
// store last tone type
dwGlobal_LastToneType = dwStrongestToneType;
}
}
}
// update values for next chunk
dwSamplesRemaining -= dwCurrChunkSize;
dwCurrSampleIndex += dwCurrChunkSize;
}
return 0;
}
int main()
{
HWAVEIN hWave = NULL;
WAVEHDR WaveHeaderData;
WAVEFORMATEX WaveFormatData;
DWORD dwRetnVal = 0;
HANDLE hWaveEvent = NULL;
printf("AudioTransmit_Listen - www.x86matthew.com\n\n");
// create event
hWaveEvent = CreateEvent(NULL, 1, 0, NULL);
if(hWaveEvent == NULL)
{
return 1;
}
// set wave format data
memset((void*)&WaveFormatData, 0, sizeof(WaveFormatData));
WaveFormatData.wFormatTag = WAVE_FORMAT_PCM;
WaveFormatData.wBitsPerSample = AUDIO_BITS_PER_SAMPLE;
WaveFormatData.nChannels = 1;
WaveFormatData.nSamplesPerSec = AUDIO_SAMPLE_RATE;
WaveFormatData.nAvgBytesPerSec = AUDIO_BITS_PER_SAMPLE * (AUDIO_BITS_PER_SAMPLE / 8);
WaveFormatData.nBlockAlign = AUDIO_BITS_PER_SAMPLE / 8;
WaveFormatData.cbSize = 0;
// open wave handle
if(waveInOpen(&hWave, WAVE_MAPPER, &WaveFormatData, (DWORD)hWaveEvent, 0, CALLBACK_EVENT | WAVE_FORMAT_DIRECT) != MMSYSERR_NOERROR)
{
CloseHandle(hWaveEvent);
return 1;
}
for(;;)
{
// set wave header data
memset((void*)&WaveHeaderData, 0, sizeof(WaveHeaderData));
WaveHeaderData.lpData = (LPSTR)bGlobal_AudioBuffer;
WaveHeaderData.dwBufferLength = sizeof(bGlobal_AudioBuffer);
WaveHeaderData.dwBytesRecorded = 0;
WaveHeaderData.dwUser = 0;
WaveHeaderData.dwFlags = 0;
WaveHeaderData.dwLoops = 0;
// prepare wave header
if(waveInPrepareHeader(hWave, &WaveHeaderData, sizeof(WaveHeaderData)) != MMSYSERR_NOERROR)
{
// error
CloseHandle(hWaveEvent);
waveInClose(hWave);
return 1;
}
// add wave input buffer
if(waveInAddBuffer(hWave, &WaveHeaderData, sizeof(WaveHeaderData)) != MMSYSERR_NOERROR)
{
// error
CloseHandle(hWaveEvent);
waveInClose(hWave);
return 1;
}
// reset event
ResetEvent(hWaveEvent);
// start recording
if(waveInStart(hWave) != MMSYSERR_NOERROR)
{
// error
CloseHandle(hWaveEvent);
waveInClose(hWave);
return 1;
}
// wait until recording has finished
for(;;)
{
// wait for event to fire
WaitForSingleObject(hWaveEvent, INFINITE);
// check if sample has finished recording
if(WaveHeaderData.dwFlags & WHDR_DONE)
{
// finished
break;
}
}
// unprepare wave header
if(waveInUnprepareHeader(hWave, &WaveHeaderData, sizeof(WAVEHDR)) != MMSYSERR_NOERROR)
{
// error
CloseHandle(hWaveEvent);
waveInClose(hWave);
return 1;
}
// process audio samples
if(ProcessSamples() != 0)
{
// error
CloseHandle(hWaveEvent);
waveInClose(hWave);
return 1;
}
}
// close wave handle
waveInClose(hWave);
// close event
CloseHandle(hWaveEvent);
return 0;
}