-
Notifications
You must be signed in to change notification settings - Fork 195
/
test.py
163 lines (135 loc) · 5.52 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import tensorflow as tf
import numpy as np
from scipy.misc import imread
import matplotlib
from src.flowlib import read_flow, flow_to_image
matplotlib.use('TKAgg')
import matplotlib.pyplot as plt
_preprocessing_ops = tf.load_op_library(
tf.resource_loader.get_path_to_datafile("./src/ops/build/preprocessing.so"))
def display(img, c):
plt.subplot(int('22' + str(c + 1)))
plt.imshow(img[0, :, :, :])
def main():
"""
.Input("image_a: float32")
.Input("image_b: float32")
.Attr("crop: list(int) >= 2")
.Attr("params_a_name: list(string)")
.Attr("params_a_rand_type: list(string)")
.Attr("params_a_exp: list(bool)")
.Attr("params_a_mean: list(float32)")
.Attr("params_a_spread: list(float32)")
.Attr("params_a_prob: list(float32)")
.Attr("params_b_name: list(string)")
.Attr("params_b_rand_type: list(string)")
.Attr("params_b_exp: list(bool)")
.Attr("params_b_mean: list(float32)")
.Attr("params_b_spread: list(float32)")
.Attr("params_b_prob: list(float32)")
.Output("aug_image_a: float32")
.Output("aug_image_b: float32")
.Output("spatial_transform_a: float32")
.Output("inv_spatial_transform_b: float32")
"""
crop = [364, 492]
params_a_name = ['translate_x', 'translate_y']
params_a_rand_type = ['uniform_bernoulli', 'uniform_bernoulli']
params_a_exp = [False, False]
params_a_mean = [0.0, 0.0]
params_a_spread = [0.4, 0.4]
params_a_prob = [1.0, 1.0]
params_b_name = []
params_b_rand_type = []
params_b_exp = []
params_b_mean = []
params_b_spread = []
params_b_prob = []
with tf.Session() as sess:
with tf.device('/gpu:0'):
image_a = imread('./img0.ppm') / 255.0
image_b = imread('./img1.ppm') / 255.0
flow = read_flow('./flow.flo')
image_a_tf = tf.expand_dims(tf.to_float(tf.constant(image_a, dtype=tf.float64)), 0)
image_b_tf = tf.expand_dims(tf.to_float(tf.constant(image_b, dtype=tf.float64)), 0)
preprocess = _preprocessing_ops.data_augmentation(image_a_tf,
image_b_tf,
crop,
params_a_name,
params_a_rand_type,
params_a_exp,
params_a_mean,
params_a_spread,
params_a_prob,
params_b_name,
params_b_rand_type,
params_b_exp,
params_b_mean,
params_b_spread,
params_b_prob)
out = sess.run(preprocess)
trans = out.spatial_transform_a
inv_trans = out.inv_spatial_transform_b
print trans.shape
print inv_trans.shape
flow_tf = tf.expand_dims(tf.to_float(tf.constant(flow)), 0)
aug_flow_tf = _preprocessing_ops.flow_augmentation(flow_tf, trans, inv_trans, crop)
aug_flow = sess.run(aug_flow_tf)[0, :, :, :]
# Plot img0, img0aug
plt.subplot(321)
plt.imshow(image_a)
plt.subplot(322)
plt.imshow(out.aug_image_a[0, :, :, :])
# Plot img1, img1aug
plt.subplot(323)
plt.imshow(image_b)
plt.subplot(324)
plt.imshow(out.aug_image_b[0, :, :, :])
# Plot flow, flowaug
plt.subplot(325)
plt.imshow(flow_to_image(flow))
plt.subplot(326)
plt.imshow(flow_to_image(aug_flow))
plt.show()
# image_b_aug = sess.run(image_b_tf)
#
# display(np.expand_dims(image_a, 0), 0)
# display(np.expand_dims(image_b, 0), 1)
# display(image_a_aug, 2)
# display(image_b_aug, 3)
# plt.show()
# o = _preprocessing_ops.flow_augmentation(flow, trans, inv_t, [4, 8])
# print n[:, :, :]
# print n[0, 0, 1], n[0, 0, 0]
# print n[1, 0, 1], n[1, 0, 0]
# print n[2, 0, 1], n[2, 0, 0]
# print '---'
# print sess.run(o)
"""# Goes along width first!!
// Caffe, NKHW: ((n * K + k) * H + h) * W + w at point (n, k, h, w)
// TF, NHWK: ((n * H + h) * W + w) * K + k at point (n, h, w, k)
H=5, W=10, K=2
n=0, h=1, w=5, k=0
(2 * 10) + c
30 49 n[0, 1, 5, 0]"""
print os.getpid()
raw_input("Press Enter to continue...")
main()
# Last index is channel!!
# K
# value 13 should be at [0, 2, 7, 1] aka batch=0, height=1, width=0, channel=0. it is at index=20.
#
# items = {
# 'N': [0, 0],
# 'H': [5, 2],
# 'W': [10, 7],
# 'K': [2, 1],
# }
#
# for (i1, v1) in items.iteritems():
# for (i2, v2) in items.iteritems():
# for (i3, v3) in items.iteritems():
# for (i4, v4) in items.iteritems():
# if ((v1[1] * v2[0] + v2[1]) * v3[0] + v3[1]) * v4[0] + v4[1] == 55:
# print 'found it: ', i1, i2, i3, i4