-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
176 lines (162 loc) · 6.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import toml
import sys
import argparse
import torch
import wandb
import env
import code_base
import os
from tqdm import tqdm
import datetime
agents = __import__("code_base")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--exp-name",
type=str,
default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment",
)
parser.add_argument("--seed", type=int, default=1, help="seed of the experiment")
parser.add_argument(
"--torch-deterministic",
type=lambda x: bool(strtobool(x)),
default=True,
nargs="?",
const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`",
)
parser.add_argument(
"--cuda",
type=lambda x: bool(strtobool(x)),
default=True,
nargs="?",
const=True,
help="if toggled, cuda will be enabled by default",
)
parser.add_argument(
"--agent-name",
type=str,
default='DQN_Agent',
help="Agent to use",
)
parser.add_argument(
"--forecast-variance",
type=float,
default=0.1,
help="variance of forecast receive by the agent",
)
parser.add_argument(
"--n-quantiles",
type=int,
default=1,
help="Number of quantiles/expectiles to consider",
)
parser.add_argument
args = parser.parse_args()
return args
def train(model, run_name, env_args, num_episodes, val_seed):
for i_episode in tqdm(range(num_episodes)):
e = env.StoreEnv(**env_args, seed=val_seed * i_episode)
done = False
state = e.get_obs()
while not done:
action = model.select_action(state).clamp(
e._max_stock - e.stock.count_nonzero(1)
)
next_state, reward, done, (sales, waste) = e.step(action)
wandb.log(
{
"Reward": reward.sum().item(),
"Sales": sales.sum().item(),
"Waste": e.total_waste.sum(),
}
)
standardized_reward = (reward - e.expected_mean) / e.expected_std
model.memory.push(
state.split(1), action.split(1), next_state.split(1), reward.split(1),
)
state = next_state
model.optimize_model()
if done:
break
if i_episode % model.target_update == 0:
model.nets.target_net.load_state_dict(model.nets.policy_net.state_dict())
model.nets.target_net.eval()
torch.save(model.nets.policy_net.state_dict(), run_name + ".pt")
print("Complete")
def evaluate(model, run_name, n_env, steps, val_seed):
with torch.inference_mode():
overall_sales = []
overall_waste = []
for env_id in tqdm(range(n_env)):
e = env.StoreEnv(**env_args, seed=val_seed * 101 * (env_id+1))
state = e.get_obs()
rewards = []
for i in range(steps):
action = model.select_action(state, eval_mode=True).clamp(
e._max_stock - e.stock.count_nonzero(1)
)
state, reward, done, (sales, waste) = e.step(action)
overall_waste.append(waste)
overall_sales.append(sales)
rewards.append(reward.mean().item())
res = sum(rewards) / len(rewards)
print(res)
wandb.log({"Average reward ": res})
torch.save(torch.cat(overall_sales).cpu(), "res/sales" + run_name + ".pt")
torch.save(torch.cat(overall_waste).cpu(), "res/waste" + run_name + ".pt")
def evaluate_baseline(env_args, n_env, steps, val_seed):
with torch.inference_mode():
overall_sales = []
overall_waste = []
for env_id in tqdm(range(n_env)):
e = env.StoreEnv(**env_args, seed=val_seed * 101 * (env_id+1))
state = e.get_obs()
rewards = []
for i in range(steps):
mask = (e.stock.count_nonzero(1) < e.assortment.base_demand).type(
torch.uint8
)
action = mask * (
2 * e.assortment.base_demand * e.bucket_customers.sum()
).clamp(e._max_stock - e.stock.count_nonzero(1))
state, reward, done, (sales, waste) = e.step(action)
overall_waste.append(waste)
overall_sales.append(sales)
rewards.append(reward.mean().item())
res = sum(rewards) / len(rewards)
print(res)
wandb.log({"Average reward ": res})
run_name = args.agent_name+str(args.forecast_variance)
torch.save(torch.cat(overall_sales).cpu(), "res/BLsales" + run_name + ".pt")
torch.save(torch.cat(overall_waste).cpu(), "res/BLwaste" + run_name + ".pt")
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
config = toml.load('config.toml')
args = parse_args()
config['global']['agent_name'] = args.agent_name
training_args = config["training_args"]
args_model = config["args_model"]
env_args = config["args_env"]
env_args['forecast_variance'] = args.forecast_variance
e = env.StoreEnv(seed=0)
n_actions = e._action_space.n
wandb.config = config
print(torch.cuda.device_count())
quantiles = torch.arange(0.0,1,1/args.n_quantiles)[1:]
args_model['quantiles'] = torch.arange(0.0,1,1/args.n_quantiles)[1:]
run_name = args.agent_name+str(args.forecast_variance)
wandb.init(
config=config,
name=run_name,
project=config["global"]["proj_name"],
tags=config["global"]["tags"],
)
agent = getattr(agents, args.agent_name)
torch.manual_seed(args.seed)
model = agent(args_model, training_args, device, n_actions)
train(model, run_name, env_args, 20, args.seed)
evaluate(model, run_name, 30, 2000, args.seed)
evaluate_baseline(env_args, 30, 2000, args.seed)