-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathimage_preprocessing.py
executable file
·379 lines (287 loc) · 12.5 KB
/
image_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""Module to preprocess images."""
#!/usr/bin/env python
# coding: utf-8
import cv2
import os
from PIL import Image
import glob
import numpy as np
from AlignDlib import AlignDlib
import io
from mtcnn.mtcnn import MTCNN
# ## Face and Label Detection
# ### 1. Using Google Vision API
# #### 1.1 Import Google Vision Library
from google.cloud import vision
# #### 1.2 Label Detection function
def detect_labels(path):
"""Detects labels in the file."""
client = vision.ImageAnnotatorClient()
with io.open(path, 'rb') as image_file:
content = image_file.read()
image = vision.types.Image(content=content)
response = client.label_detection(image=image)
labels = response.label_annotations
labels_list = [(label.description).lower() for label in labels]
return labels_list
# #### 1.3 Face Detection function
def detect_face_google(face_file, max_results=4):
"""Uses the Vision API to detect faces in the given file.
Args:
face_file: A file-like object containing an image with faces.
Returns:
An array of Face objects with information about the picture.
"""
client = vision.ImageAnnotatorClient()
content = face_file.read()
image = vision.types.Image(content=content)
return client.face_detection(image=image).face_annotations
# #### 1.4 Function to crop the detected faces
def crop_faces_google(image_file, cropped_images_path, faces):
count = 1
# open the image
image = Image.open(image_file)
# print(len(faces))
# if faces is null, then it means no face was detected in the image
if not faces:
print("No face detected in the image.")
return
# for each detected face in the faces list
for face in faces:
# get the coordinates for each vertex
coordinates = [(vertex.x, vertex.y)
for vertex in face.bounding_poly.vertices]
# separate the x and y coordinates
x_coordinates, y_coordinates = [], []
for vertex in face.bounding_poly.vertices:
x_coordinates.append(vertex.x)
y_coordinates.append(vertex.y)
x0, x1, y0, y1 = x_coordinates[0], x_coordinates[2], y_coordinates[0], y_coordinates[2]
# set the coordinates of the box for each face
box = (x0, y0, x1, y1)
# crop the image using coordinates of the box
cropped_image = image.crop(box)
# extract image name from filename
image_name = (image_file.split("/")[-1])[:-4]
# save the cropped image
cropped_image.save(cropped_images_path + image_name + "_face_" + str(count) + ".jpg")
count+=1
# #### 1.5 Function to resize the cropped faces
def resize_faces_google(cropped_images_path, scaled_images_path, size):
count = 1
# for each image in the cropped images path
for file in glob.glob(cropped_images_path+"*.jpg"):
# read the image
image = cv2.imread(file)
# get the height and width of the image
height, width = image.shape[:2]
# get the height and weight ratios
height_ratio, width_ratio = float(size/height), float(size/width)
# resize the image making sure that the original ratio is maintained
resized = cv2.resize(image, None, fx=width_ratio, fy=height_ratio, interpolation=cv2.INTER_AREA)
# extract image name from full file name
image_name = (file.split("/")[-1])
# save the scaled image
cv2.imwrite(scaled_images_path + image_name, resized)
# #### 1.6 Apply preprocessing to the dataset using the functions above
def preprocess_google(image_file):
with open(image_file, 'rb') as image:
# detect faces in the image
faces = detect_face_google(image)
# Reset file pointer, so we can read the file again
image.seek(0)
# crop detected faces and save in "Faces" directory
crop_faces_google(image_file, "test/Faces/", faces)
# resize the cropped faces stored in the "Faces" directory and save in "Scaled" directory
resize_faces_google("test/Faces/", "test/Scaled/", 64)
# ---
# ### 2. Using OpenCV
# #### 2.1 Load the serialized DNN model from disk
net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt',
'res10_300x300_ssd_iter_140000.caffemodel'
)
# #### 2.2 Function to detect and crop faces using OpenCV DNN
def extract_faces_cv_dnn(image_file, cropped_images_path):
# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
image = cv2.imread(image_file)
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300,
300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
faces = net.forward()
count = 1
image = Image.open(image_file)
if faces is None:
print("No face detected in the image.")
return
# loop over the faces
for i in range(faces.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = faces[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > 0.5:
# compute the (x, y)-coordinates of the bounding box for the
# object
box = faces[0, 0, i, 3:7] * np.array([w, h, w, h])
cropped_image = image.crop(box)
image_name = (image_file.split("/")[-1])[:-4]
cropped_image.save(cropped_images_path + image_name + "_face_" + str(count) + ".jpg")
count+=1
# #### 2.3 Load the Haar Cascade model
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# #### 2.4 Function to detect and crop faces using Haar Cascade
def extract_faces_cv(image_file, cropped_images_path):
# Read the image
image = cv2.imread(image_file)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
count = 0
image = Image.open(image_file)
if faces is None:
print("No face detected in the image.")
return
# loop over the faces
for (x, y, w, h) in faces:
# crop the face in the image
cropped_image = image.crop((x, y, x+w, y+h))
image_name = (image_file.split("/")[-1])[:-4]
cropped_image.save(cropped_images_path + image_name + "_face_" + str(count) + ".jpg")
count+=1
return count
# #### 2.5 Function to resize the cropped faces
def resize_faces_cv(cropped_images_path, scaled_images_path, size):
count = 1
# for each image in the cropped images path
for file in glob.glob(cropped_images_path+"*.jpg"):
# read the image
image = cv2.imread(file)
# get the height and width of the image
height, width = image.shape[:2]
# get the height and weight ratios
height_ratio, width_ratio = float(size/height), float(size/width)
# resize the image making sure that the original ratio is maintained
resized = cv2.resize(image, None, fx=width_ratio, fy=height_ratio, interpolation=cv2.INTER_AREA)
# extract image name from full file name
image_name = (file.split("/")[-1])
# save the scaled image
cv2.imwrite(scaled_images_path + image_name, resized)
def preprocess_cv(image_file):
# detect and crop faces in the image
extract_faces_cv(image_file, "test/Faces/")
# resize the cropped faces and save in "Scaled" directory
resize_faces_cv("test/Faces/", "test/Scaled/", 64)
# ---
# ### 3. Using MTCNN
# #### 3.1 Initialize the MTCNN detector
mtcnn = MTCNN()
# #### 3.2 Function to detect and crop faces
def extract_faces_mtcnn(image_file, cropped_images_path):
# Read the image
image = cv2.imread(image_file)
# detect faces
faces = mtcnn.detect_faces(image)
count = 0
image = Image.open(image_file)
if faces is None:
print("No face detected in the image.")
return
# loop over the faces
for face in faces:
bounding_box = face['box']
# crop the face in the image
cropped_image = image.crop((bounding_box[0], bounding_box[1], bounding_box[0]+bounding_box[2], bounding_box[1]+bounding_box[3]))
image_name = (image_file.split("/")[-1])[:-4]
cropped_image.save(cropped_images_path + image_name + "_face_" + str(count) + ".jpg")
count+=1
return count
# ---
# ### 4. Using Dlib
# #### 4.1 Import Dlib
import dlib
# #### 4.2 Function to detect and crop faces
# dlib hog + svm based face detector
detector = dlib.get_frontal_face_detector()
def extract_faces(image_file, cropped_images_path):
# load input image
image = cv2.imread(image_file)
count = 0
# get the image height and width
image_height, image_width = image.shape[:2]
if image is None:
print("Could not read input image")
exit()
# apply face detection
faces = detector(image, 1)
# loop over detected faces
for face in faces:
# crop the image
cropped_image = image[max(0, face.top()): min(face.bottom(), image_height),
max(0, face.left()): min(face.right(), image_width)]
# extract image name from filename
image_name = (image_file.split("/")[-1])[:-4]
# save the cropped image
cv2.imwrite(cropped_images_path + image_name + "_face_" + str(count) + ".jpg", cropped_image)
count+=1
return count
# #### 4.3 Function to resize the cropped faces
def resize_faces(image_file, cropped_images_path, scaled_images_path, size):
count = 1
# for each image in the cropped images path
for file in glob.glob(cropped_images_path+"*.jpg"):
# only scale the faces of the current image
if((image_file.split("/")[-1])[:-4] in file):
# read the image
image = cv2.imread(file)
# get the height and width of the image
height, width = image.shape[:2]
# get the height and weight ratios
height_ratio, width_ratio = float(size/height), float(size/width)
# resize the image making sure that the original ratio is maintained
resized = cv2.resize(image, None, fx=width_ratio, fy=height_ratio, interpolation=cv2.INTER_AREA)
# extract image name from full file name
image_name = (file.split("/")[-1])
# save the scaled image
cv2.imwrite(scaled_images_path + image_name, resized)
# #### 4.4 Function to align the faces
align_dlib = AlignDlib('shape_predictor_68_face_landmarks.dat')
def align_faces(image_file, scaled_images_path, aligned_images_path):
count = 1
# for each image in the scaled images directory
for file in glob.glob(scaled_images_path+"*.jpg"):
# only align the faces of the current image
if((image_file.split("/")[-1])[:-4] in file):
# read the image
image = cv2.imread(file)
# initialize the bounding box
bb = align_dlib.getLargestFaceBoundingBox(image)
# align the face
aligned = align_dlib.align(64, image, bb, landmarkIndices=AlignDlib.INNER_EYES_AND_BOTTOM_LIP)
image_name = (file.split("/")[-1])
# if aligned
if aligned is not None:
# save the image in the aligned images directory
cv2.imwrite(aligned_images_path + image_name, aligned)
else:
# save the image without alignment in the aligned images directory
cv2.imwrite(aligned_images_path + image_name, image)
# #### 4.5 Apply preprocessing to the dataset using the functions above
def preprocess(data_dir, image_file):
# detect and crop faces in the image
faces_count = extract_faces(data_dir + image_file, data_dir + "Faces/")
if faces_count == 0:
extract_faces_mtcnn(data_dir + image_file, data_dir + "Faces/")
# resize the cropped faces and save in "Scaled" directory
resize_faces(data_dir + image_file, data_dir + "Faces/", data_dir + "Scaled/", 64)
# align the scaled faces and save in "Aligned" directory
align_faces(data_dir + image_file, data_dir + "Scaled/", data_dir + "Aligned/")