-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathevaluate_300.py
79 lines (58 loc) · 2.65 KB
/
evaluate_300.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""Module to evaluate full pipeline on 100 images of each class of the validation set."""
#!/usr/bin/env python
# coding: utf-8
import os
import sys
import glob
import numpy as np
import image_preprocessing
import cnn
import bayesian_network
import json
import pandas as pd
classes = {"Positive": 0, "Neutral": 1, "Negative": 2, "None": 3}
def classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list):
with open('val_labels.json', mode='r', encoding='utf-8') as f:
image_labels_dict = json.load(f)
labels = image_labels_dict[image_name]
# print("RadhaKrishna")
# print(labels)
# preprocess the image
# image_preprocessing.preprocess(image_folder_path, image_name)
# get mean cnn predictions for the faces from the image
cnn_label, cnn_dict, faces_detected = cnn.predict_image(cnn_model, image_folder_path + "Aligned/", image_name)
# get the bayesian and bayesian + cnn predictions for the image
bayesian_label, bayesian_cnn_label, emotion_dict, emotion_cnn_dict = bayesian_network.inference(bayesian_model, labels_list, labels, cnn_label)
# print("Faces detected: " + str(faces_detected))
# print("Real Label: " + str(real_label))
# print("CNN Label: " + str(cnn_label))
print("Bayesian Label: " + str(bayesian_label))
# print("Bayesian + CNN Label: " + str(bayesian_cnn_label))
return classes[real_label], classes[str(cnn_label)], classes[str(bayesian_label)], classes[str(bayesian_cnn_label)], faces_detected
# print("RadhaKrishna")
cnn_model = cnn.load_model()
bayesian_model, labels_list = bayesian_network.load_model()
def evaluate(image_folder_path, real_label):
# print("RadhaKrishna")
_, _, files = next(os.walk(image_folder_path))
file_count = len(files)-1
predictions = []
i = 1
for file in sorted(glob.glob(image_folder_path + "*.jpg")):
image_name = (file.split('/'))[-1]
print("Image: " + image_name)
print(str(i) + "/" + str(file_count))
prediction = {"Image": image_name}
prediction["Actual"], prediction["CNN"], prediction["Bayesian"], prediction["Bayesian + CNN"], prediction["Faces Detected"] = classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list)
predictions.append(prediction)
i+=1
if (i==100):
break
return predictions
class_list = ['Positive', 'Neutral', 'Negative']
predictions_list = []
for emotion_class in class_list:
predictions = evaluate('input/val/' + emotion_class + '/', emotion_class)
predictions_list += predictions
df = pd.DataFrame(predictions_list)
df.to_pickle('predictions_300')