-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathclassify_image.py
executable file
·87 lines (71 loc) · 4.05 KB
/
classify_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""Module to classify an image as Positive, Negative or Neutral.
python classify_image.py input/val/Positive/ Positive
"""
#!/usr/bin/env python
# coding: utf-8
import os
import sys
import glob
import numpy as np
import image_preprocessing
import cnn
import bayesian_network
import json
image_label_dict = {
"image_happy_1.jpg": ['people', 'friendship', 'fun', 'event', 'drinking', 'happy', 'picnic', 'recreation', 'smile', 'leisure'],
"image_happy_2.jpg": ['hair', 'facial expression', 'fun', 'friendship', 'hairstyle', 'smile', 'yellow', 'event', 'human', 'laugh'],
"image_happy_neutral_1.jpg": ['people', 'family taking photos together', 'social group', 'child', 'father', 'event','family', 'fun', 'smile', 'photography'],
"image_happy_neutral_2.jpg": ['people', 'social group', 'fun', 'team', 'event', 'crew', 'tourism', 'uniform', 'leisure', 'smile'],
"image_happy_neutral_3.jpg": ['people', 'tribe', 'fun', 'human', 'smile', 'community', 'child', 'happy', 'adaptation'],
"image_happy_neutral_4.jpg": ['people', 'child', 'smile', 'community', 'youth', 'friendship', 'adaptation', 'fun', 'happy', 'event'],
"image_neutral_sad.jpg": ['hair', 'face', 'chin', 'hairstyle', 'cool', 'forehead', 'black hair', 'fun', 'neck', 'smile'],
"image_neutral.jpg": ['face', 'people', 'facial expression', 'child', 'smile', 'skin', 'fun', 'child model','human', 'happy'],
"image_sad_1.jpg": ['people', 'community', 'tribe', 'adaptation', 'tradition', 'event', 'child', 'smile', 'tourism', 'turban']
}
# function to classify an image
def classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list):
# if image is from collection, get the labels from the dictionary
if image_name in image_label_dict.keys():
print("RadhaKrishna")
labels = image_label_dict[image_name]
# else get the labels from the Google Vision API
else:
labels = image_preprocessing.detect_labels("input/" + image_name)
# labels = ['people', 'friendship', 'fun', 'event', 'drinking', 'happy', 'picnic', 'recreation', 'smile', 'leisure']
print("RadhaKrishna")
print(labels)
# preprocess the image
image_preprocessing.preprocess(image_folder_path, image_name)
# Gets the following using the CNN model -
# i. label of the predicted emotion for the whole image
# ii. mean cnn predictions for all the faces in the image
# iii. a boolean that specifies whether any faces were detected in the image
cnn_label, cnn_dict, faces_detected = cnn.predict_image(cnn_model, image_folder_path + "Aligned/", image_name)
# Gets the following using the Bayesian model -
# i. label of the predicted emotion for the whole image (using the Bayesian Network)
# ii. label of the predicted emotion for the whole image (using the Bayesian Network + CNN as a node)
# iii. Bayesian predictions for the whole image
# iv. Bayesian + CNN predictions for the whole image
bayesian_label, bayesian_cnn_label, emotion_dict, emotion_cnn_dict = bayesian_network.inference(bayesian_model, labels_list, labels, cnn_label)
print("Faces detected: " + str(faces_detected))
print("Real Label: " + str(real_label))
print("CNN Label: " + str(cnn_label))
print("Bayesian Label: " + str(bayesian_label))
print("Bayesian + CNN Label: " + str(bayesian_cnn_label))
# return the label of the emotion with the highest probability
return bayesian_cnn_label
def main(image_folder_path, real_label):
print("RadhaKrishna")
# load the cnn model
cnn_model = cnn.load_model()
# load the bayesian model
bayesian_model, labels_list = bayesian_network.load_model()
# for each image in the test path
for file in sorted(glob.glob(image_folder_path + "*.jpg")):
# extract the image name from the image path
image_name = (file.split('/'))[-1]
print("Image: " + image_name)
# classify the image
prediction = classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list)
if __name__=="__main__":
main(sys.argv[1], sys.argv[2])