-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaze_env.py
77 lines (62 loc) · 2.41 KB
/
maze_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import gym
from gym import spaces
class MazeEnv(gym.Env):
"""
Custom Environment that follows gym interface.
This is a simple env where the agent must learn to go always left.
"""
# Because of google colab, we cannot implement the GUI ('human' render mode)
metadata = {'render.modes': ['console']}
# Define constants for clearer code
LEFT = 0
RIGHT = 1
def __init__(self, grid_size=10):
super(MazeEnv, self).__init__()
# Size of the 1D-grid
self.grid_size = grid_size
# Initialize the agent at the right of the grid
self.agent_pos = grid_size - 1
# Define action and observation space
# They must be gym.spaces objects
# Example when using discrete actions, we have two: left and right
n_actions = 2
self.action_space = spaces.Discrete(n_actions)
# The observation will be the coordinate of the agent
# this can be described both by Discrete and Box space
self.observation_space = spaces.Box(low=0, high=self.grid_size,
shape=(1,), dtype=np.float32)
def reset(self):
"""
Important: the observation must be a numpy array
:return: (np.array)
"""
# Initialize the agent at the right of the grid
self.agent_pos = self.grid_size - 1
# here we convert to float32 to make it more general (in case we want to use continuous actions)
return np.array(self.agent_pos).astype(np.float32)
def step(self, action):
if action == self.LEFT:
self.agent_pos -= 1
elif action == self.RIGHT:
self.agent_pos += 1
else:
raise ValueError("Received invalid action={} which is not part of the action space".format(action))
# Account for the boundaries of the grid
self.agent_pos = np.clip(self.agent_pos, 0, self.grid_size)
# Are we at the left of the grid?
done = self.agent_pos == 0
# Null reward everywhere except when reaching the goal (left of the grid)
reward = 1 if self.agent_pos == 0 else -1
# Optionally we can pass additional info, we are not using that for now
info = {}
return np.array(self.agent_pos).astype(np.float32), reward, done, info
def render(self, mode='console'):
if mode != 'console':
raise NotImplementedError()
# agent is represented as a cross, rest as a dot
print("." * self.agent_pos, end="")
print("x", end="")
print("." * (self.grid_size - self.agent_pos))
def close(self):
pass