-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
136 lines (105 loc) · 4.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import time
import os
import json
from models.model_loader import ModelLoader
from train.trainer_loader import TrainerLoader
from utils.data.data_prep import DataPreparation
import utils.arg_parser
from utils.logger import Logger
from utils.misc import get_split_str
import torch
if __name__ == '__main__':
# Parse arguments
args = utils.arg_parser.get_args()
# Print arguments
utils.arg_parser.print_args(args)
device = torch.device('cuda:{}'.format(args.cuda_device) if
torch.cuda.is_available() and not args.disable_cuda else 'cpu')
job_string = time.strftime("{}-{}-D%Y-%m-%d-T%H-%M-%S-G{}".format(args.model, args.dataset, args.cuda_device))
job_path = os.path.join(args.checkpoint_path, job_string)
# Create new checkpoint directory
#if not os.path.exists(job_path):
os.makedirs(job_path)
# Save job arguments
with open(os.path.join(job_path, 'config.json'), 'w') as f:
json.dump(vars(args), f)
# Data preparation
print("Preparing Data ...")
split = get_split_str(args.train, bool(args.eval_ckpt), args.dataset)
data_prep = DataPreparation(args.dataset, args.data_path)
dataset, data_loader = data_prep.get_dataset_and_loader(split, args.pretrained_model,
batch_size=args.batch_size, num_workers=args.num_workers)
if args.train:
val_dataset, val_data_loader = data_prep.get_dataset_and_loader('val',
args.pretrained_model, batch_size=args.batch_size, num_workers=args.num_workers)
# TODO: If eval + checkpoint load validation set
print()
print("Loading Model ...")
ml = ModelLoader(args, dataset)
model = getattr(ml, args.model)()
print(model, '\n')
# TODO: Remove and handle with checkpoints
if not args.train:
print("Loading Model Weights ...")
evaluation_state_dict = torch.load(args.eval_ckpt)
model_dict = model.state_dict(full_dict=True)
model_dict.update(evaluation_state_dict)
model.load_state_dict(model_dict)
model.eval()
if args.train:
val_dataset.set_label_usage(dataset.return_labels)
# Create logger
logger = Logger(os.path.join(job_path, 'logs'))
# Get trainer
trainer_creator = getattr(TrainerLoader, args.model)
trainer = trainer_creator(args, model, dataset, data_loader, logger, device)
if args.train:
evaluator = trainer_creator(args, model, val_dataset, val_data_loader,
logger, device)
evaluator.train = False
if args.train:
print("Training ...")
else:
print("Evaluating ...")
vars(args)['num_epochs'] = 1
# Start training/evaluation
max_score = 0
while trainer.curr_epoch < args.num_epochs:
if args.train:
trainer.train_epoch()
# Eval & Checkpoint
checkpoint_name = "ckpt-e{}".format(trainer.curr_epoch)
checkpoint_path = os.path.join(job_path, checkpoint_name)
model.eval()
result = evaluator.train_epoch()
if evaluator.REQ_EVAL:
score = val_dataset.eval(result, checkpoint_path)
else:
score = result
model.train()
logger.scalar_summary('score', score, trainer.curr_epoch)
# TODO: Eval model
# Save the models
checkpoint = {'epoch': trainer.curr_epoch,
'max_score': max_score,
'optimizer' : trainer.optimizer.state_dict()}
checkpoint_path += ".pth"
torch.save(model.state_dict(), checkpoint_path)
torch.save(checkpoint, os.path.join(job_path,
"training_checkpoint.pth"))
if score > max_score:
max_score = score
link_name = "best-ckpt.pth"
link_path = os.path.join(job_path, link_name)
if os.path.islink(link_path):
os.unlink(link_path)
dir_fd = os.open(os.path.dirname(link_path), os.O_RDONLY)
os.symlink(os.path.basename(checkpoint_path), link_name, dir_fd=dir_fd)
os.close(dir_fd)
else:
result = trainer.train_epoch()
if trainer.REQ_EVAL:
score = dataset.eval(result, "results")
if not args.train and args.model == 'sc':
with open('results.json', 'w') as f:
json.dump(result, f)