-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathutils.py
61 lines (46 loc) · 1.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Modifed form timm and swin repo.
""" CUDA / AMP utils
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
try:
from apex import amp
has_apex = True
except ImportError:
amp = None
has_apex = False
from timm.utils.clip_grad import dispatch_clip_grad
class ApexScalerAccum:
state_dict_key = "amp"
def __call__(self, loss, optimizer, clip_grad=None, clip_mode='norm', parameters=None, create_graph=False,
update_grad=True):
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
dispatch_clip_grad(amp.master_params(optimizer), clip_grad, mode=clip_mode)
optimizer.step()
def state_dict(self):
if 'state_dict' in amp.__dict__:
return amp.state_dict()
def load_state_dict(self, state_dict):
if 'load_state_dict' in amp.__dict__:
amp.load_state_dict(state_dict)
class NativeScalerAccum:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, clip_mode='norm', parameters=None, create_graph=False,
update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
dispatch_clip_grad(parameters, clip_grad, mode=clip_mode)
self._scaler.step(optimizer)
self._scaler.update()
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)