-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfix_simulate.py
131 lines (109 loc) · 3.79 KB
/
fix_simulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import config
import util
#from animations.alternate_direction import getAcceleration, getSource
def set_bound(N, b, x):
for i in range(1, N+1):
if b == 1:
x[0][i] = -x[1][i]
x[N+1][i] = -x[N][i]
else:
x[0][i] = x[1][i]
x[N+1][i] = x[N][i]
if b == 2:
x[i][0] = -x[i][1]
x[i][N+1] = -x[i][N]
else:
x[i][0] = x[i][1]
x[i][N+1] = x[i][N]
x[0][0] = 0.5 * (x[1][0] + x[0][1])
x[0][N+1] = 0.5 * (x[1][N+1] + x[0][N])
x[N+1][0] = 0.5 * (x[N][0] + x[N+1][1])
x[N+1][N+1] = 0.5 * (x[N][N+1] + x[N+1][N])
def project(N, u, v, p, div):
h = 1.0 / N
for i in range(1, N+1):
for j in range(1, N+1):
div[i, j] = -0.5 * h * (u[i+1, j] - u[i-1, j] + v[i, j+1] - v[i, j-1])
p[i, j] = 0
set_bound(N, 0, div)
set_bound(N, 0, p)
for k in range(config.ITERATION):
for i in range(1, N+1):
for j in range(1, N+1):
p[i, j] = (div[i, j] + p[i-1, j] + p[i+1, j] + p[i, j-1] + p[i, j+1]) / 4
set_bound(N, 0, p)
for i in range(1, N+1):
for j in range(1, N+1):
u[i][j] -= 0.5 * (p[i+1, j] - p[i-1, j]) / h
v[i][j] -= 0.5 * (p[i, j+1] - p[i, j-1]) / h
set_bound(N, 1, u)
set_bound(N, 2, v)
def diffusion(N, b, x, x0, diffusion_factor):
a = config.DELTATIME * diffusion_factor * N * N
for k in range(config.ITERATION):
for i in range(1, N+1):
for j in range(1, N+1):
x[i, j] = (x0[i, j] + a * (x[i-1, j] + x[i+1, j] + x[i, j-1] + x[i, j+1])) / (1 + 4*a)
set_bound(N, b, x)
def advect(N, b, d, d0, u, v):
dt0 = N*config.DELTATIME
for i in range(1, N+1):
for j in range(1, N+1):
x = i - dt0 * u[i, j]
y = j - dt0 * v[i, j]
if x < 0.5:
x = 0.5
elif x > config.SIZE + 0.5:
x = config.SIZE + 0.5
if y < 0.5:
y = 0.5
elif y > config.SIZE + 0.5:
y = config.SIZE + 0.5
i0 = int(x)
i1 = int(x) + 1
j0 = int(y)
j1 = int(y) + 1
s1 = x - i0
s0 = 1.0 - s1
t1 = y - j0
t0 = 1.0 - t1
d[i, j] = s0 * (t0 * d0[i0, j0] + t1 * d0[i0, j1]) + \
s1 * (t0 * d0[i1, j0] + t1 * d0[i1, j1])
set_bound(N, b, d)
def addSource(N, x, s):
for i in range(N+2):
for j in range(N+2):
x[i][j] += config.DELTATIME * s[i][j]
def vel_step(N, u, v, u0, v0):
addSource(N, u, u0)
addSource(N, v, v0)
u, u0 = u0, u
diffusion(N, 1, u, u0, config.DIFFUSION_FACTOR_VELOCITY)
v, v0 = v0, v
diffusion(N, 2, v, v0, config.DIFFUSION_FACTOR_VELOCITY)
project(N, u, v, u0, v0)
u, u0, v, v0 = u0, u, v0, v
advect(N, 1, u, u0, u0, v0)
advect(N, 2, v, v0, u0, v0)
project(N, u, v, u0, v0)
def den_step(N, x, x0, u, v):
addSource(N, x, x0)
x0, x = x, x0
diffusion(N, 0, x, x0, config.DIFFUSION_FACTOR_DENSITY)
x0, x = x, x0
advect(N, 0, x, x0, u, v)
def addVelocity(u, v, timestep, animation):
accu, accv = animation.getAcceleration(timestep)
u += accu
v += accv
def addDensity(dens, timestep, animation):
adds = animation.getSource(timestep)
dens += adds
def update(N, den_prev, den, u_prev, u, v_prev, v, timestep, animation):
addDensity(den_prev, timestep, animation)
addVelocity(u_prev, v_prev, timestep, animation)
# vel step
vel_step(N, u, v, u_prev, v_prev)
# dense step
den_step(N, den, den_prev, u, v)