-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model_loading.py
158 lines (139 loc) · 5.48 KB
/
test_model_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from argparse import Namespace
import pytorch_lightning as pl
import torch
from rxn_negative_learning.models.base_transformer.pytorch_lightning.dataset import LitSmilesDataset
from rxn_negative_learning.models.baseline.baseline_model import BaselineTrainer
from rxn_negative_learning.models.rl_transformer.reinforce_lightning import (
ReinforceLitVanillaTransformer,
)
from rxn_negative_learning.models.scorers.ideal_scorer import IdealScorer
from rxn_negative_learning.models.tokenization import SmilesTokenizer
from tests.conftest import set_randomness
def test_model_init_simple(parameters):
set_randomness()
tokenizer = SmilesTokenizer(parameters["vocabulary"])
pos_samples = ["O=C1CCC(=O)N1Br.c1cn[nH]c1>>Brc1cn[nH]c1", "BrBr.c1cnsc1>>Brc1cnsc1"]
neg_samples = ["O=C1CCC(=O)N1Br.c1cn[nH]c1>>Brc1cc[nH]n1"]
# Create model
rlmodel = ReinforceLitVanillaTransformer(
model_args=parameters, tokenizer=tokenizer, scorer=IdealScorer(pos_samples, neg_samples)
)
assert rlmodel.baseline_model is None
assert rlmodel.BASELINE_TARGETS_DICT is None
assert isinstance(rlmodel.scorer, IdealScorer)
assert rlmodel.reference_model is None
# Create Dataset
smiles_dataset = LitSmilesDataset(dataset_args=parameters, tokenizer=tokenizer)
smiles_dataset.load()
train_dataloader = smiles_dataset.train_dataloader()
val_dataloader = smiles_dataset.val_dataloader()
# Create trainer
n_parameters = Namespace(**parameters)
trainer = pl.Trainer.from_argparse_args(
n_parameters,
deterministic=True,
)
trainer.fit(
rlmodel,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
)
trainer.save_checkpoint("/tmp/checkpoint.ckpt")
# For finetuning
parameters["regularization_beta"] = 2
new_rlmodel = ReinforceLitVanillaTransformer.load_from_checkpoint(
"/tmp/checkpoint.ckpt", model_args=parameters, strict=False
)
assert new_rlmodel.baseline_model is None
assert new_rlmodel.BASELINE_TARGETS_DICT is None
assert isinstance(new_rlmodel.scorer, IdealScorer)
assert new_rlmodel.reference_model is None
assert new_rlmodel.regularization_beta == 2
# For resuming
model = ReinforceLitVanillaTransformer(
model_args=parameters, tokenizer=tokenizer, scorer=IdealScorer(pos_samples, neg_samples)
)
trainer = pl.Trainer.from_argparse_args(
n_parameters,
deterministic=True,
)
trainer.fit(
model,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
ckpt_path="/tmp/checkpoint.ckpt",
)
def test_model_init_with_baseline(parameters, dummy_scorer):
set_randomness()
tokenizer = SmilesTokenizer(parameters["vocabulary"])
pos_samples = ["O=C1CCC(=O)N1Br.c1cn[nH]c1>>Brc1cn[nH]c1", "BrBr.c1cnsc1>>Brc1cnsc1"]
neg_samples = ["O=C1CCC(=O)N1Br.c1cn[nH]c1>>Brc1cc[nH]n1"]
# Adding baseline-related parameters
parameters["with_baseline"] = "sigmoid"
parameters["baseline_model_dropout"] = 0.01
parameters["baseline_model_lr"] = 1e-5
parameters["baseline_model_oversampling_threshold"] = 0.1
parameters["baseline_model_weight_decay"] = 1e-3
parameters["randomic"] = False
parameters["baseline_batch_size"] = 10000
# Create model
rlmodel = ReinforceLitVanillaTransformer(
model_args=parameters, tokenizer=tokenizer, scorer=dummy_scorer
)
assert isinstance(rlmodel.baseline_model, BaselineTrainer)
assert rlmodel.BASELINE_TARGETS_DICT is None
assert rlmodel.reference_model is None
# Create Dataset
smiles_dataset = LitSmilesDataset(dataset_args=parameters, tokenizer=tokenizer)
smiles_dataset.load()
train_dataloader = smiles_dataset.train_dataloader()
val_dataloader = smiles_dataset.val_dataloader()
# Create trainer
n_parameters = Namespace(**parameters)
trainer = pl.Trainer.from_argparse_args(
n_parameters,
deterministic=True,
)
trainer.fit(
rlmodel,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
)
trainer.save_checkpoint("/tmp/checkpoint.ckpt")
# For finetuning
new_rlmodel = ReinforceLitVanillaTransformer.load_from_checkpoint(
"/tmp/checkpoint.ckpt", scorer=dummy_scorer, strict=False
)
isinstance(rlmodel.baseline_model, BaselineTrainer)
assert new_rlmodel.BASELINE_TARGETS_DICT is None
assert new_rlmodel.reference_model is None
# For resuming
parameters["max_steps"] = 4
n_parameters = Namespace(**parameters)
new_new_rlmodel = ReinforceLitVanillaTransformer(
model_args=parameters, tokenizer=tokenizer, scorer=IdealScorer(pos_samples, neg_samples)
)
trainer = pl.Trainer.from_argparse_args(
n_parameters,
deterministic=True,
)
m = torch.load("/tmp/checkpoint.ckpt")
print(f"{m.keys()}")
print(f"Epoch: {m['epoch']}")
print(f"Global step: {m['global_step']}")
print(m["reference_model"])
print(str(m["baseline_model"]))
trainer.fit(
new_new_rlmodel,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
ckpt_path="/tmp/checkpoint.ckpt",
)
# This works because in the new_new_rl_model the baseline is not training due to only negative samples
assert all([
torch.eq(i, j).all()
for i, j in zip(
rlmodel.baseline_model.model.state_dict().values(),
new_new_rlmodel.baseline_model.model.state_dict().values(),
)
])