forked from federicoparroni/recsys2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobabilistic_hybrid_optimizer.py
60 lines (48 loc) · 2.04 KB
/
probabilistic_hybrid_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from recommenders.hybrid.Probabilistic_Hybrid import Probabilistic_Hybrid
from recommenders.hybrid.borda_hybrid import Borda_Hybrid
from skopt import gp_minimize
from skopt.space import Real, Integer, Categorical
from skopt.utils import use_named_args
import data
param_list = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
"""
Optimizer intended for the Probabilistic_Hybrid class.
"""
@use_named_args([
Categorical(param_list, name='last_interaction'),
Categorical(param_list, name='catboost_066693_local'),
Categorical(param_list, name='location_subm'),
Categorical(param_list, name='min_price_based'),
Categorical(param_list, name='xgb14f0665local')
])
def objective(last_interaction, catboost_066693_local, location_subm, min_price_based, xgb14f0665local):
params = {
'last_interaction': last_interaction,
'catboost_066693_local': catboost_066693_local,
'location_subm': location_subm,
'min_price_based': min_price_based,
'xgb14f0665local': xgb14f0665local
}
model = Probabilistic_Hybrid(params, mode='local')
model.fit()
sub = model.recommend_batch()
MRR = model.score_sub(sub)
print(f'Iteration parameters: '
f" - last_interaction= {last_interaction} - catboost_066693_local= {catboost_066693_local} - location_subm= {location_subm} - min_price_based= {min_price_based} - xgb14f0665local= {xgb14f0665local}")
return -MRR
space = [
Categorical(param_list, name='last_interaction'),
Categorical(param_list, name='catboost_066693_local'),
Categorical(param_list, name='location_subm'),
Categorical(param_list, name='min_price_based'),
Categorical(param_list, name='xgb14f0665local')
]
res_gp = gp_minimize(objective, space, n_calls=250, n_random_starts=10, random_state=17, verbose=True)
print("""Best parameters:
- last_interaction= %d
- catboost_066693_local= %d
- location_subm= %d
- min_price_based= %d
- xgb14f0665local= %d
"""% (res_gp.x[0], res_gp.x[1], res_gp.x[2], res_gp.x[3], res_gp.x[4]
))