forked from nmap/nmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TargetGroup.cc
929 lines (796 loc) · 28.1 KB
/
TargetGroup.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/***************************************************************************
* TargetGroup.cc -- The "TargetGroup" class holds a group of IP *
* addresses, such as those from a '/16' or '10.*.*.*' specification. It *
* also has a trivial HostGroupState class which handles a bunch of *
* expressions that go into TargetGroup classes. *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
*
* The Nmap Security Scanner is (C) 1996-2024 Nmap Software LLC ("The Nmap
* Project"). Nmap is also a registered trademark of the Nmap Project.
*
* This program is distributed under the terms of the Nmap Public Source
* License (NPSL). The exact license text applying to a particular Nmap
* release or source code control revision is contained in the LICENSE
* file distributed with that version of Nmap or source code control
* revision. More Nmap copyright/legal information is available from
* https://nmap.org/book/man-legal.html, and further information on the
* NPSL license itself can be found at https://nmap.org/npsl/ . This
* header summarizes some key points from the Nmap license, but is no
* substitute for the actual license text.
*
* Nmap is generally free for end users to download and use themselves,
* including commercial use. It is available from https://nmap.org.
*
* The Nmap license generally prohibits companies from using and
* redistributing Nmap in commercial products, but we sell a special Nmap
* OEM Edition with a more permissive license and special features for
* this purpose. See https://nmap.org/oem/
*
* If you have received a written Nmap license agreement or contract
* stating terms other than these (such as an Nmap OEM license), you may
* choose to use and redistribute Nmap under those terms instead.
*
* The official Nmap Windows builds include the Npcap software
* (https://npcap.com) for packet capture and transmission. It is under
* separate license terms which forbid redistribution without special
* permission. So the official Nmap Windows builds may not be redistributed
* without special permission (such as an Nmap OEM license).
*
* Source is provided to this software because we believe users have a
* right to know exactly what a program is going to do before they run it.
* This also allows you to audit the software for security holes.
*
* Source code also allows you to port Nmap to new platforms, fix bugs, and
* add new features. You are highly encouraged to submit your changes as a
* Github PR or by email to the [email protected] mailing list for possible
* incorporation into the main distribution. Unless you specify otherwise, it
* is understood that you are offering us very broad rights to use your
* submissions as described in the Nmap Public Source License Contributor
* Agreement. This is important because we fund the project by selling licenses
* with various terms, and also because the inability to relicense code has
* caused devastating problems for other Free Software projects (such as KDE
* and NASM).
*
* The free version of Nmap is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Warranties,
* indemnification and commercial support are all available through the
* Npcap OEM program--see https://nmap.org/oem/
*
***************************************************************************/
/* $Id$ */
#include "tcpip.h"
#include "TargetGroup.h"
#include "targets.h"
#include "NmapOps.h"
#include "nmap_error.h"
#include "nmap_dns.h"
#include "nmap.h"
#include "libnetutil/netutil.h"
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
#include <typeinfo>
#include <errno.h>
#include <limits.h> // CHAR_BIT
/* We use bit vectors to represent what values are allowed in an IPv4 octet.
Each vector is built up of an array of bitvector_t (any convenient integer
type). */
typedef unsigned long bitvector_t;
/* A 256-element bit vector, representing legal values for one octet. */
typedef bitvector_t octet_bitvector[(256 - 1) / (sizeof(unsigned long) * CHAR_BIT) + 1];
#define BITVECTOR_BITS (sizeof(bitvector_t) * CHAR_BIT)
#define BIT_SET(v, n) ((v)[(n) / BITVECTOR_BITS] |= 1UL << ((n) % BITVECTOR_BITS))
#define BIT_IS_SET(v, n) (((v)[(n) / BITVECTOR_BITS] & 1UL << ((n) % BITVECTOR_BITS)) != 0)
extern NmapOps o;
class NetBlock {
public:
virtual ~NetBlock() {}
NetBlock() {
current_addr = resolvedaddrs.begin();
}
std::string hostname;
std::list<struct sockaddr_storage> resolvedaddrs;
std::list<struct sockaddr_storage> unscanned_addrs;
std::list<struct sockaddr_storage>::const_iterator current_addr;
/* Parses an expression such as 192.168.0.0/16, 10.1.0-5.1-254, or
fe80::202:e3ff:fe14:1102/112 and returns a newly allocated NetBlock. The af
parameter is AF_INET or AF_INET6. Returns NULL in case of error. */
static NetBlock *parse_expr(const char *target_expr, int af, std::vector<DNS::Request> &requests);
bool is_resolved_address(const struct sockaddr_storage *ss) const;
/* For NetBlock subclasses that need to "resolve" themselves into a different
* NetBlock subclass, override this method. Otherwise, it's safe to reassign
* the return value to the pointer that this method was called through.
* On error, return NULL. */
virtual NetBlock *resolve(const DNS::Request &req) { return this; }
virtual void reject_last_host() {}
virtual bool next(struct sockaddr_storage *ss, size_t *sslen) = 0;
virtual void apply_netmask(int bits) = 0;
virtual std::string str() const = 0;
};
class NetBlockRandomIPv4 : public NetBlock {
public:
NetBlockRandomIPv4();
void reject_last_host() { if (!infinite) count++; }
void set_num_random(unsigned long num) {
if (num == 0)
infinite = true;
else
count = num;
}
bool next(struct sockaddr_storage *ss, size_t *sslen);
void apply_netmask(int bits) {}
std::string str() const {return "Random IPv4 addresses";}
private:
struct sockaddr_in base;
unsigned long count;
bool infinite;
};
class NetBlockIPv4Ranges : public NetBlock {
public:
octet_bitvector octets[4];
NetBlockIPv4Ranges();
bool next(struct sockaddr_storage *ss, size_t *sslen);
void apply_netmask(int bits);
std::string str() const;
void set_addr(const struct sockaddr_in *addr);
private:
unsigned int counter[4];
};
class NetBlockIPv6Netmask : public NetBlock {
public:
void set_addr(const struct sockaddr_in6 *addr);
bool next(struct sockaddr_storage *ss, size_t *sslen);
void apply_netmask(int bits);
std::string str() const;
private:
bool exhausted;
struct sockaddr_in6 addr;
struct in6_addr start;
struct in6_addr cur;
struct in6_addr end;
};
class NetBlockHostname : public NetBlock {
public:
NetBlockHostname(const char *hostname, int af);
int af;
int bits;
NetBlock *resolve(const DNS::Request &req);
bool next(struct sockaddr_storage *ss, size_t *sslen);
void apply_netmask(int bits);
std::string str() const;
};
/* Return a newly allocated string containing the part of expr up to the last
'/' (or a copy of the whole string if there is no slash). *bits will contain
the number after the slash, or -1 if there was no slash. In case of error
return NULL; *bits is then undefined. */
static char *split_netmask(const char *expr, int *bits) {
const char *slash;
slash = strrchr(expr, '/');
if (slash != NULL) {
long l;
const char *tail;
l = parse_long(slash + 1, &tail);
if (tail == slash + 1 || *tail != '\0' || l < 0 || l > INT_MAX)
return NULL;
*bits = (int) l;
} else {
slash = expr + strlen(expr);
*bits = -1;
}
return mkstr(expr, slash);
}
/* Parse an IPv4 address with optional ranges and wildcards into bit vectors.
Each octet must match the regular expression '(\*|#?(-#?)?(,#?(-#?)?)*)',
where '#' stands for an integer between 0 and 255. Return 0 on success, -1 on
error. */
static int parse_ipv4_ranges(octet_bitvector octets[4], const char *spec) {
const char *p;
int octet_index, i;
p = spec;
octet_index = 0;
while (*p != '\0' && octet_index < 4) {
if (*p == '*') {
for (i = 0; i < 256; i++)
BIT_SET(octets[octet_index], i);
p++;
} else {
for (;;) {
long start, end;
const char *tail;
errno = 0;
start = parse_long(p, &tail);
/* Is this a range open on the left? */
if (tail == p) {
if (*p == '-')
start = 0;
else
return -1;
}
if (errno != 0 || start < 0 || start > 255)
return -1;
p = tail;
/* Look for a range. */
if (*p == '-') {
p++;
errno = 0;
end = parse_long(p, &tail);
/* Is this range open on the right? */
if (tail == p)
end = 255;
if (errno != 0 || end < 0 || end > 255 || end < start)
return -1;
p = tail;
} else {
end = start;
}
/* Fill in the range in the bit vector. */
for (i = start; i <= end; i++)
BIT_SET(octets[octet_index], i);
if (*p != ',')
break;
p++;
}
}
octet_index++;
if (octet_index < 4) {
if (*p != '.')
return -1;
p++;
}
}
if (*p != '\0' || octet_index < 4)
return -1;
return 0;
}
static NetBlock *parse_expr_without_netmask(const char *hostexp, int af, std::vector<DNS::Request> &requests) {
struct sockaddr_storage ss;
size_t sslen;
if (af == AF_INET) {
NetBlockIPv4Ranges *netblock_ranges;
/* Check if this is an IPv4 address, with optional ranges and wildcards. */
netblock_ranges = new NetBlockIPv4Ranges();
if (parse_ipv4_ranges(netblock_ranges->octets, hostexp) == 0)
return netblock_ranges;
delete netblock_ranges;
}
sslen = sizeof(ss);
if (resolve_numeric(hostexp, 0, &ss, &sslen, AF_INET6) == 0) {
if (af != AF_INET6) {
error("%s looks like an IPv6 target specification -- you have to use the -6 option.", hostexp);
return NULL;
}
NetBlockIPv6Netmask *netblock_ipv6;
netblock_ipv6 = new NetBlockIPv6Netmask();
netblock_ipv6->set_addr((struct sockaddr_in6 *) &ss);
return netblock_ipv6;
}
NetBlockHostname *nb = new NetBlockHostname(hostexp, af);
DNS::Request req;
req.name = hostexp;
req.userdata = nb;
req.type = DNS::ANY;
requests.push_back(req);
return nb;
}
/* Parses an expression such as 192.168.0.0/16, 10.1.0-5.1-254, or
fe80::202:e3ff:fe14:1102/112 and returns a newly allocated NetBlock. The af
parameter is AF_INET or AF_INET6. Returns NULL in case of error. */
NetBlock *NetBlock::parse_expr(const char *target_expr, int af, std::vector<DNS::Request> &requests) {
NetBlock *netblock;
char *hostexp;
int bits;
hostexp = split_netmask(target_expr, &bits);
if (hostexp == NULL) {
error("Unable to split netmask from target expression: \"%s\"", target_expr);
goto bail;
}
if (af == AF_INET && bits > 32) {
error("Illegal netmask in \"%s\". Assuming /32 (one host)", target_expr);
bits = -1;
}
netblock = parse_expr_without_netmask(hostexp, af, requests);
if (netblock == NULL)
goto bail;
netblock->apply_netmask(bits);
free(hostexp);
return netblock;
bail:
free(hostexp);
return NULL;
}
bool NetBlock::is_resolved_address(const struct sockaddr_storage *ss) const {
for (std::list<struct sockaddr_storage>::const_iterator it = this->resolvedaddrs.begin(), end = this->resolvedaddrs.end(); it != end; ++it) {
if (sockaddr_storage_equal(&*it, ss)) {
return true;
}
}
return false;
}
NetBlockRandomIPv4::NetBlockRandomIPv4() : count(0), infinite(false) {
memset(&base, 0, sizeof(base));
base.sin_family = AF_INET;
}
bool NetBlockRandomIPv4::next(struct sockaddr_storage *ss, size_t *sslen) {
if (!infinite) {
if (count > 0) {
count--;
}
else {
return false;
}
}
do {
base.sin_addr.s_addr = get_random_unique_u32();
} while (ip_is_reserved(&base.sin_addr));
memcpy(ss, &base, sizeof(base));
*sslen = sizeof(base);
return true;
}
NetBlockIPv4Ranges::NetBlockIPv4Ranges() {
unsigned int i;
memset(this->octets, 0, sizeof(this->octets));
for (i = 0; i < 4; i++) {
this->counter[i] = 0;
}
}
bool NetBlockIPv4Ranges::next(struct sockaddr_storage *ss, size_t *sslen) {
struct sockaddr_in *sin;
unsigned int i;
/* This first time this is called, the current values of this->counter
probably do not point to set bits (they point to 0.0.0.0). Find the first
set bit in each bitvector. If any overflow occurs, it means that there is
not bit set for one of the octets and therefore there are not addresses
overall. */
for (i = 0; i < 4; i++) {
while (this->counter[i] < 256 && !BIT_IS_SET(this->octets[i], this->counter[i]))
this->counter[i]++;
if (this->counter[i] >= 256)
return false;
}
/* Assign the returned address based on current counters. */
memset(ss, 0, sizeof(*ss));
sin = (struct sockaddr_in *) ss;
sin->sin_family = AF_INET;
sin->sin_port = 0;
#if HAVE_SOCKADDR_SA_LEN
sin->sin_len = sizeof(*sin);
#endif
sin->sin_addr.s_addr = htonl((this->counter[0] << 24) | (this->counter[1] << 16) | (this->counter[2] << 8) | this->counter[3]);
*sslen = sizeof(*sin);
for (i = 0; i < 4; i++) {
bool carry;
carry = false;
do {
this->counter[3 - i] = (this->counter[3 - i] + 1) % 256;
if (this->counter[3 - i] == 0)
carry = true;
} while (!BIT_IS_SET(this->octets[3 - i], this->counter[3 - i]));
if (!carry)
break;
}
if (i >= 4) {
if (o.resolve_all && !this->resolvedaddrs.empty() && current_addr != this->resolvedaddrs.end() && ++current_addr != this->resolvedaddrs.end()) {
this->set_addr((struct sockaddr_in *) &*current_addr);
}
else {
/* We cycled all counters. Mark them invalid for the next call. */
this->counter[0] = 256;
this->counter[1] = 256;
this->counter[2] = 256;
this->counter[3] = 256;
}
}
return true;
}
/* Expand a single-octet bit vector to include any additional addresses that
result when mask is applied. */
static void apply_ipv4_netmask_octet(octet_bitvector bits, uint8_t mask) {
unsigned int i, j;
uint32_t chunk_size;
/* Process the bit vector in chunks, first of size 1, then of size 2, up to
size 128. Check the next bit of the mask. If it is 1, do nothing.
Otherwise, pair up the chunks (first with the second, third with the
fourth, etc.). For each pair of chunks, set a bit in one chunk if it is
set in the other. chunk_size also serves as an index into the mask. */
for (chunk_size = 1; chunk_size < 256; chunk_size <<= 1) {
if ((mask & chunk_size) != 0)
continue;
for (i = 0; i < 256; i += chunk_size * 2) {
for (j = 0; j < chunk_size; j++) {
if (BIT_IS_SET(bits, i + j))
BIT_SET(bits, i + j + chunk_size);
else if (BIT_IS_SET(bits, i + j + chunk_size))
BIT_SET(bits, i + j);
}
}
}
}
/* Expand IPv4 bit vectors to include any additional addresses that result when
the given netmask is applied. The mask is in host byte order. */
static void apply_ipv4_netmask(octet_bitvector octets[4], uint32_t mask) {
/* Apply the mask one octet at a time. It's done this way because ranges
span exactly one octet. */
apply_ipv4_netmask_octet(octets[0], (mask & 0xFF000000) >> 24);
apply_ipv4_netmask_octet(octets[1], (mask & 0x00FF0000) >> 16);
apply_ipv4_netmask_octet(octets[2], (mask & 0x0000FF00) >> 8);
apply_ipv4_netmask_octet(octets[3], (mask & 0x000000FF));
}
/* Expand IPv4 bit vectors to include any additional addresses that result from
the application of a CIDR-style netmask with the given number of bits. If
bits is negative it is taken to be 32. */
void NetBlockIPv4Ranges::apply_netmask(int bits) {
uint32_t mask;
if (bits > 32)
return;
if (bits < 0)
bits = 32;
if (bits == 0)
mask = 0x00000000;
else
mask = 0xFFFFFFFF << (32 - bits);
apply_ipv4_netmask(this->octets, mask);
}
static std::string bitvector_to_range_string(const octet_bitvector v) {
unsigned int i, j;
std::ostringstream result;
i = 0;
while (i < 256) {
while (i < 256 && !BIT_IS_SET(v, i))
i++;
if (i >= 256)
break;
j = i + 1;
while (j < 256 && BIT_IS_SET(v, j))
j++;
if (result.tellp() > 0)
result << ",";
if (i == j - 1)
result << i;
else if (i + 1 == j - 1)
result << i << "," << (j - 1);
else
result << i << "-" << (j - 1);
i = j;
}
return result.str();
}
std::string NetBlockIPv4Ranges::str() const {
std::ostringstream result;
result << bitvector_to_range_string(this->octets[0]);
result << ".";
result << bitvector_to_range_string(this->octets[1]);
result << ".";
result << bitvector_to_range_string(this->octets[2]);
result << ".";
result << bitvector_to_range_string(this->octets[3]);
return result.str();
}
void NetBlockIPv4Ranges::set_addr(const struct sockaddr_in *addr) {
uint32_t ip;
assert(addr->sin_family == AF_INET);
ip = ntohl(addr->sin_addr.s_addr);
memset(this->octets, 0, sizeof(this->octets));
BIT_SET(this->octets[0], (ip & 0xFF000000) >> 24);
BIT_SET(this->octets[1], (ip & 0x00FF0000) >> 16);
BIT_SET(this->octets[2], (ip & 0x0000FF00) >> 8);
BIT_SET(this->octets[3], (ip & 0x000000FF));
/* Reset counter so that set_addr can be used to reset the whole NetBlock */
for (int i = 0; i < 4; i++) {
this->counter[i] = 0;
}
}
void NetBlockIPv6Netmask::set_addr(const struct sockaddr_in6 *addr) {
assert(addr->sin6_family == AF_INET6);
this->exhausted = false;
this->addr = *addr;
this->start = this->addr.sin6_addr;
this->cur = this->addr.sin6_addr;
this->end = this->addr.sin6_addr;
}
/* Get the sin6_scope_id member of a sockaddr_in6, based on a device name. This
is used to assign scope to all addresses that otherwise lack a scope id when
the -e option is used. */
static int get_scope_id(const char *devname) {
struct interface_info *ii;
if (devname == NULL || devname[0] == '\0')
return 0;
ii = getInterfaceByName(devname, AF_INET6);
if (ii != NULL)
return ii->ifindex;
else
return 0;
}
static bool ipv6_equal(const struct in6_addr *a, const struct in6_addr *b) {
return memcmp(a->s6_addr, b->s6_addr, 16) == 0;
}
bool NetBlockIPv6Netmask::next(struct sockaddr_storage *ss, size_t *sslen) {
struct sockaddr_in6 *sin6;
if (this->exhausted){
if (o.resolve_all && !this->resolvedaddrs.empty() && current_addr != this->resolvedaddrs.end() && ++current_addr != this->resolvedaddrs.end()) {
this->set_addr((struct sockaddr_in6 *) &*current_addr);
}
else {
return false;
}
}
memset(ss, 0, sizeof(*ss));
sin6 = (struct sockaddr_in6 *) ss;
sin6->sin6_family = AF_INET6;
#ifdef SIN_LEN
sin6->sin6_len = sizeof(*sin6);
#endif
*sslen = sizeof(*sin6);
if (this->addr.sin6_scope_id != 0)
sin6->sin6_scope_id = this->addr.sin6_scope_id;
else
sin6->sin6_scope_id = get_scope_id(o.device);
sin6->sin6_addr = this->cur;
if (ipv6_equal(&this->cur, &this->end))
exhausted = true;
/* Increment current address. */
for (int i = 15; i >= 0; i--) {
this->cur.s6_addr[i]++;
if (this->cur.s6_addr[i] > 0)
break;
}
return true;
}
/* Fill in an in6_addr with a CIDR-style netmask with the given number of bits. */
static void make_ipv6_netmask(struct in6_addr *mask, int bits) {
unsigned int i;
memset(mask, 0, sizeof(*mask));
if (bits < 0)
bits = 0;
else if (bits > 128)
bits = 128;
if (bits == 0)
return;
i = 0;
/* 0 < bits <= 128, so this loop goes at most 15 times. */
for (; bits > 8; bits -= 8)
mask->s6_addr[i++] = 0xFF;
mask->s6_addr[i] = 0xFF << (8 - bits);
}
/* a = (a & mask) | (b & ~mask) */
static void ipv6_or_mask(struct in6_addr *a, const struct in6_addr *mask, const struct in6_addr *b) {
unsigned int i;
for (i = 0; i < sizeof(a->s6_addr) / sizeof(*a->s6_addr); i++)
a->s6_addr[i] = (a->s6_addr[i] & mask->s6_addr[i]) | (b->s6_addr[i] & ~mask->s6_addr[i]);
}
void NetBlockIPv6Netmask::apply_netmask(int bits) {
#ifdef _AIX
const struct in6_addr zeros = { { { 0x00, 0x00, 0x00, 0x00 } } };
const struct in6_addr ones = { { { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff } } };
#else
const struct in6_addr zeros = { { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} } };
const struct in6_addr ones = { { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} } };
#endif
struct in6_addr mask;
if (bits > 128)
return;
if (bits < 0)
bits = 128;
this->exhausted = false;
make_ipv6_netmask(&mask, bits);
ipv6_or_mask(&this->start, &mask, &zeros);
ipv6_or_mask(&this->end, &mask, &ones);
this->cur = this->start;
}
/* a = a & ~b */
static void recover_ipv6_netmask(struct in6_addr *a, const struct in6_addr *b) {
unsigned int i;
for (i = 0; i < sizeof(a->s6_addr) / sizeof(*a->s6_addr); i++)
a->s6_addr[i] = a->s6_addr[i] & ~b->s6_addr[i];
}
static unsigned int count_ipv6_bits(const struct in6_addr *a) {
unsigned int i, n;
unsigned char mask;
n = 0;
for (i = 0; i < sizeof(a->s6_addr) / sizeof(*a->s6_addr); i++) {
for (mask = 0x80; mask != 0; mask >>= 1) {
if ((a->s6_addr[i] & mask) != 0)
n++;
}
}
return n;
}
std::string NetBlockIPv6Netmask::str() const {
std::ostringstream result;
unsigned int bits;
struct in6_addr a;
a = this->start;
recover_ipv6_netmask(&a, &this->end);
bits = count_ipv6_bits(&a);
result << inet_ntop_ez((struct sockaddr_storage *) &this->addr, sizeof(this->addr)) << "/" << bits;
return result.str();
}
NetBlock *NetBlockHostname::resolve(const DNS::Request &req) {
std::list<struct sockaddr_storage> resolvedaddrs;
std::list<struct sockaddr_storage> unscanned_addrs;
NetBlock *netblock;
for (size_t i = 0; i < req.ssv.size(); i++) {
const struct sockaddr_storage &ss = req.ssv[i];
if (ss.ss_family == af && (o.resolve_all || resolvedaddrs.empty())) {
resolvedaddrs.push_back(ss);
}
else {
unscanned_addrs.push_back(ss);
}
}
if (resolvedaddrs.empty()) {
if (!unscanned_addrs.empty()) {
switch (this->af) {
case AF_INET:
error("Warning: Hostname %s resolves, but not to any IPv4 address. Try scanning with -6", this->hostname.c_str());
break;
case AF_INET6:
error("Warning: Hostname %s resolves, but not to any IPv6 address. Try scanning without -6", this->hostname.c_str());
break;
default:
error("Warning: Unknown address family: %d", this->af);
break;
}
}
error("Failed to resolve \"%s\".", this->hostname.c_str());
if (this->hostname == "-")
error("Bare '-': did you put a space between '--'?");
return NULL;
}
struct sockaddr_storage &ss = resolvedaddrs.front();
size_t sslen = sizeof(ss);
if (!unscanned_addrs.empty() && o.verbose > 1) {
error("Warning: Hostname %s resolves to %lu IPs. Using %s.", this->hostname.c_str(),
(unsigned long) unscanned_addrs.size() + resolvedaddrs.size(), inet_ntop_ez(&ss, sslen));
}
netblock = NULL;
if (ss.ss_family == AF_INET) {
NetBlockIPv4Ranges *netblock_ranges;
netblock_ranges = new NetBlockIPv4Ranges();
netblock_ranges->set_addr((struct sockaddr_in *) &ss);
netblock = netblock_ranges;
} else if (ss.ss_family == AF_INET6) {
NetBlockIPv6Netmask *netblock_ipv6;
netblock_ipv6 = new NetBlockIPv6Netmask();
netblock_ipv6->set_addr((struct sockaddr_in6 *) &ss);
netblock = netblock_ipv6;
}
if (netblock == NULL)
return NULL;
netblock->hostname = this->hostname;
netblock->resolvedaddrs.swap(resolvedaddrs);
netblock->unscanned_addrs.swap(unscanned_addrs);
netblock->current_addr = netblock->resolvedaddrs.begin();
netblock->apply_netmask(this->bits);
return netblock;
}
NetBlockHostname::NetBlockHostname(const char *hostname, int af) {
this->hostname = hostname;
this->af = af;
this->bits = -1;
}
bool NetBlockHostname::next(struct sockaddr_storage *ss, size_t *sslen) {
assert(false);
return false;
}
void NetBlockHostname::apply_netmask(int bits) {
this->bits = bits;
}
std::string NetBlockHostname::str() const {
std::ostringstream result;
result << this->hostname;
if (this->bits >= 0)
result << "/" << this->bits;
return result.str();
}
TargetGroup::~TargetGroup() {
for (std::list<NetBlock *>::iterator it = netblocks.begin();
it != netblocks.end(); it++) {
delete *it;
}
}
void TargetGroup::reject_last_host() {
assert(!netblocks.empty());
NetBlock *nb = netblocks.front();
nb->reject_last_host();
}
/* Initializes (or reinitializes) the object with a new expression, such
as 192.168.0.0/16 , 10.1.0-5.1-254 , or fe80::202:e3ff:fe14:1102 .
*/
bool TargetGroup::load_expressions(HostGroupState *hs, int af) {
assert(netblocks.empty());
// This is a wild guess, but we need some sort of limit.
static const size_t EXPR_PARSE_BATCH_SZ = o.ping_group_sz;
const char *target_expr = NULL;
std::vector<DNS::Request> requests;
requests.reserve(EXPR_PARSE_BATCH_SZ/4);
while (netblocks.size() < EXPR_PARSE_BATCH_SZ
&& NULL != (target_expr = hs->next_expression())) {
NetBlock *nb = NetBlock::parse_expr(target_expr, af, requests);
if (nb == NULL) {
log_bogus_target(target_expr);
}
else {
netblocks.push_back(nb);
}
}
if (netblocks.empty()) {
return false;
}
if (requests.size() > 0) {
nmap_mass_dns(requests.data(), requests.size());
}
std::list<NetBlock *>::iterator nb_it = netblocks.begin();
for (std::vector<DNS::Request>::const_iterator rit = requests.begin();
rit != requests.end(); rit++) {
const DNS::Request &req = *rit;
NetBlock *nb_old = (NetBlock *) req.userdata;
NetBlock *nb_new = nb_old->resolve(req);
nb_it = std::find(nb_it, netblocks.end(), nb_old);
if (nb_new == NULL) {
// Resolution failed; remove the NetBlock
nb_it = netblocks.erase(nb_it);
delete nb_old;
}
else {
assert (nb_new != nb_old);
// Resolution succeeded; replace the NetBlock
*nb_it = nb_new;
delete nb_old;
}
}
requests.clear();
return !netblocks.empty();
}
void TargetGroup::generate_random_ips(unsigned long num_random) {
NetBlockRandomIPv4 *nbrand = new NetBlockRandomIPv4();
nbrand->set_num_random(num_random);
netblocks.push_front(nbrand);
}
/* Grab the next host from this expression (if any) and updates its internal
state to reflect that the IP was given out. Returns 0 and
fills in ss if successful. ss must point to a pre-allocated
sockaddr_storage structure */
int TargetGroup::get_next_host(struct sockaddr_storage *ss, size_t *sslen) {
while (!netblocks.empty()) {
NetBlock *nb = netblocks.front();
if (nb->next(ss, sslen)) {
return 0;
}
// Ran out of hosts in that block. Remove it.
netblocks.pop_front();
delete nb;
}
// Ran out of netblocks
return -1;
}
/* Returns true iff the given address is the one that was resolved to create
this target group; i.e., not one of the addresses derived from it with a
netmask. */
bool TargetGroup::is_resolved_address(const struct sockaddr_storage *ss) const {
assert(!netblocks.empty());
NetBlock *nb = netblocks.front();
return nb->is_resolved_address(ss);
}
/* Return a string of the name or address that was resolved for this group. */
const char *TargetGroup::get_resolved_name(void) const {
assert(!netblocks.empty());
NetBlock *nb = netblocks.front();
if (nb->hostname.empty())
return NULL;
else
return nb->hostname.c_str();
}
/* Return the list of addresses that the name for this group resolved to, but
which were not scanned, if it came from a name resolution. */
const std::list<struct sockaddr_storage> &TargetGroup::get_unscanned_addrs(void) const {
assert(!netblocks.empty());
NetBlock *nb = netblocks.front();
return nb->unscanned_addrs;
}
/* is the current expression a named host */
int TargetGroup::get_namedhost() const {
return this->get_resolved_name() != NULL;
}