-
Notifications
You must be signed in to change notification settings - Fork 39
/
get-preds.py
74 lines (56 loc) · 2.51 KB
/
get-preds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
parser = argparse.ArgumentParser(
description='''
======================================================================
Predict shot types using a pretrained ResNet-50
======================================================================
Usage
-------
python get-preds.py
--path_base '/home/user/shot-type-classifier'
--path_img '/home/user/Desktop/imgs'
--path_preds '/home/user/Desktop/imgs/preds'
''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--path_base', type=str,
help='path to the "shot-type-classifier" directory')
parser.add_argument('--path_img', type=str,
help='path to where the images are stored')
parser.add_argument('--path_preds', type=str, default = None,
help="path where you'd like to store the predictions")
args = parser.parse_args()
path = args.path_base
path_img = args.path_img
path_preds = args.path_preds
from initialise import *
learn, data = get_model_data(Path(path))
learn = learn.to_fp32()
def save_preds(path_img, path_preds=None):
os.mkdir(path_preds) if not os.path.exists(path_preds) else None
os.chdir(path_img)
files = [f for f in os.listdir(path_img) if f.endswith(('.jpg', '.jpeg', '.png'))]
print(files)
for file in files:
# open file
x = open_image(file)
# get preds
preds_num = learn.predict(x)[2].numpy()
# form data-frame
df = pd.DataFrame(list(zip(data.classes, preds_num )), columns=['shot-type', 'prediction'])
# reorder data-frame from largest to smallest shot size
df['shot-type'].replace({ 'Extreme Wide': 'EWS',
'Long': 'LS',
'Medium': 'MS',
'Medium Close-Up': 'MCU',
'Close-Up': 'CU',
'Extreme Close-Up': 'ECU'}, inplace=True)
df['shot-type'] = pd.Categorical(df['shot-type'], ['EWS', 'LS', 'MS', 'MCU', 'CU', 'ECU'])
df = df.sort_values('shot-type').reset_index(drop=True)
# probability --> percentage
df['prediction'] *= 100
# save to disk
fname = file.rpartition('.')[0] + '_preds.csv'
if path_preds is not None:
df.to_csv(Path(path_preds)/fname, index=False)
else:
df.to_csv(Path(path_img)/fname, index=False)
save_preds(path_img, path_preds)