Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

step1: synthetic_shapes_v6 #300

Open
yyyyiiiinnnn opened this issue Jul 27, 2023 · 5 comments
Open

step1: synthetic_shapes_v6 #300

yyyyiiiinnnn opened this issue Jul 27, 2023 · 5 comments

Comments

@yyyyiiiinnnn
Copy link

Hello, I found that there are 10,000 pictures in the train file used for training in the synthetic_shapes_v6 generated after running the first step, but my GPU seems to be unable to afford it. How should I only include 5,000 pictures for my subsequent training? Please help me with some confusion. Thanks!

@rpautrat
Copy link
Owner

Hi, in superpoint/configs/magic-point_shapes.yaml, you can add the following entry:

data:
    generation:
        split_sizes:
            training: 5000

But I don't understand why 10000 would be too much for your GPU... The whole set of images is never at the same time in GPU memory, it should only be generated and processed by batches only.

@yyyyiiiinnnn
Copy link
Author

My friend!Thank you very much for your answer!

@yyyyiiiinnnn
Copy link
Author

yyyyiiiinnnn commented Jul 27, 2023

I'm so sorry, I'm really new to this, I can't quite figure out the process of it, I set my batch count to 1.
The reason I ask this question is because I also get the error mentioned in #296 :
Start training
[07/27/2023 17:23:31 INFO] Iter 0: loss 4.1785, precision 0.0006, recall 0.0545
/home/yibo/SuperPoint-master/superpoint/models/base_model.py:387: RuntimeWarning: Mean of empty slice
metrics = {m: np.nanmean(metrics[m], axis=0) for m in metrics}
[07/27/2023 17:23:44 INFO] Iter 1000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:23:57 INFO] Iter 2000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:24:10 INFO] Iter 3000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:24:23 INFO] Iter 4000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:24:36 INFO] Iter 5000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:24:49 INFO] Iter 6000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:25:02 INFO] Iter 7000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:25:15 INFO] Iter 8000: loss nan, precision nan, recall 0.0000
[07/27/2023 17:25:28 INFO] Iter 9000: loss nan, precision nan, recall 0.0000

@1z2213
Copy link

1z2213 commented Aug 5, 2023

很抱歉,我真的很陌生,我不太清楚它的过程,我将我的批次计数设置为 1。我问这个问题的原因是因为我也收到了 #296 中提到的错误: 开始训练 [07/27/2023 17:23:31 INFO] Iter 0: 损失 4.1785,精度 0.0006,召回 0.0545 /home/yibo/SuperPoint-master/superpoint/models/base_model.py:387: 运行时警告:空切片指标的平均值 = {m: np.nanmean(metrics[m], axis=0) for m in metrics} [07/27/2023 17:23:44 INFO] Iter 1000: 损失楠,精密楠,召回 0.0000 [07/27/2023 17:23:57 信息] Iter 2000:损失楠,精密楠,召回 0.0000 [07/27/2023 17:24:10 信息] Iter 3000:损失楠,精密楠,召回 0.0000 [07/27/2023 17:24:23 信息] Iter 4000:损失楠,精度楠,召回 0.0000 [07/27/2023 17:24:36 信息] Iter 5000:损失楠,精密楠,召回0.0000 [07/27/2023 17:24:49 INFO] Iter 6000:损失楠, 精度楠,召回 0.0000 [07/27/2023 17:25:02 信息] Iter 7000:损失楠,精密楠,召回 0.0000 [07/27/2023 17:25:15 信息] Iter 8000:损失楠,精密楠,召回 0.0000 [07/27/2023 17:25:28 信息] Iter 9000:损失楠,精密楠,召回 0.0000

HI! Have you solved this problem yet?

@yyyyiiiinnnn
Copy link
Author

For me, the reason for this problem seems to be that I used my own pictures for training. When I use coco to run step1, this error is solved.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants