-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_small_tensorboard_logs.py
81 lines (53 loc) · 2.51 KB
/
generate_small_tensorboard_logs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import re
import glob
import os.path
import time
import sys
import pandas as pd
from tbparse import SummaryReader
from torch.utils.tensorboard import SummaryWriter
pd.options.mode.copy_on_write = True
def load_logged_data(logdir, extraction_pattern):
reader = SummaryReader(logdir)
match = re.match(extraction_pattern, logdir)
df = reader.scalars
df['logdir'] = logdir
df['seed'] = int(match.group("seed"))
df['sensor_confidence'] = float(match.group("sensor_confidence"))
return df
def preprocess_results(df):
epsilon_data = df[df.tag.str.contains(r'algo/.*/epsilon')]
reward_data = df[df.tag.str.contains(r'.*/reward/.*')]
num_steps_data = df[df.tag.str.contains(r'.*/num_steps/.*')]
# Keep only rows where epsilon = 1, as they allow to derive the episodes where a new RM was learnt
droppable = epsilon_data[epsilon_data.value != 1.0].index
epsilon_data = epsilon_data.drop(droppable)
# Convert -1 rewards to 0, as for the final results we don't care about the difference between timeouts and failures
reward_data.loc[reward_data.value < 0, 'value'] = 0
return epsilon_data, reward_data, num_steps_data
def write_preprocess_data(out_dir, epsilon_df, reward_df, num_steps_df):
writer = SummaryWriter(out_dir)
for index, row in epsilon_df.iterrows():
curr_step = row["step"]
writer.add_scalar(row["tag"], row['value'], curr_step)
for index, row in reward_df.iterrows():
curr_step = row["step"]
writer.add_scalar(row["tag"], row['value'], curr_step)
for index, row in num_steps_df.iterrows():
curr_step = row["step"]
writer.add_scalar(row["tag"], row['value'], curr_step)
if __name__ == "__main__":
dir_name = sys.argv[1]
log_dir_reg = f'logs/{dir_name}/*'
preprocessed_log_dir = f'logs/preprocessed/{dir_name}'
# Match any file name that start with some text and end with _{seed}_{sensor_confidence}
file_pattern = r"(.*)_(?P<seed>\d+)_(?P<sensor_confidence>[\d.]+)"
log_dirs = glob.glob(log_dir_reg)
print(f"[{time.asctime()}]: Started shrinking {len(log_dirs)} Tensorboard log files")
for i, log_dir in enumerate(log_dirs):
print(f"[{time.asctime()}][{i}/{len(log_dirs)}]: Starting to shrink: {log_dir}")
df = load_logged_data(log_dir, file_pattern)
eps, rew, steps = preprocess_results(df)
run_session = os.path.basename(log_dir)
out_dir = os.path.join(preprocessed_log_dir, run_session)
write_preprocess_data(out_dir, eps, rew, steps)